scholarly journals Leptin and the control of pharyngeal patency during sleep in severe obesity

2014 ◽  
Vol 116 (10) ◽  
pp. 1334-1341 ◽  
Author(s):  
Steven D. Shapiro ◽  
Chien-Hung Chin ◽  
Jason P. Kirkness ◽  
Brian M. McGinley ◽  
Susheel P. Patil ◽  
...  

Rationale: Obesity imposes mechanical loads on the upper airway, resulting in flow limitation and obstructive sleep apnea (OSA). In previous animal models, leptin has been considered to serve as a stimulant of ventilation and may prevent respiratory depression during sleep. We hypothesized that variations in leptin concentration among similarly obese individuals will predict differences in compensatory responses to upper airway obstruction during sleep. Methods: An observational study was conducted in 23 obese women [body mass index (BMI): 46 ± 3 kg/m2, age: 41 ± 12 yr] and 3 obese men (BMI: 46 ± 3 kg/m2, age: 43 ± 4 yr). Subjects who were candidates for bariatric surgery were recruited to determine upper airway collapsibility under hypotonic conditions [pharyngeal critical pressure (passive PCRIT)], active neuromuscular responses to upper airway obstruction during sleep, and overnight fasting serum leptin levels. Compensatory responses were defined as the differences in peak inspiratory airflow (ΔVImax), inspired minute ventilation (ΔVI), and pharyngeal critical pressure (ΔPCRIT) between the active and passive conditions. Results: Leptin concentration was not associated with sleep disordered breathing severity, passive PCRIT, or baseline ventilation. In the women, increases in serum leptin concentrations were significantly associated with increases in ΔVImax ( r2 = 0.44, P < 0.001), ΔVI ( r2 = 0.40, P < 0.001), and ΔPCRIT ( r2 = 0.19, P < 0.04). These responses were independent of BMI, waist-to-hip ratio, neck circumference, or sagittal girth. Conclusion: Leptin may augment neural compensatory mechanisms in response to upper airway obstruction, minimizing upper airway collapse, and/or mitigating potential OSA severity. Variability in leptin concentration among similarly obese individuals may contribute to differences in OSA susceptibility.

2012 ◽  
Vol 112 (3) ◽  
pp. 403-410 ◽  
Author(s):  
Chien-Hung Chin ◽  
Jason P. Kirkness ◽  
Susheel P. Patil ◽  
Brian M. McGinley ◽  
Philip L. Smith ◽  
...  

Defective structural and neural upper airway properties both play a pivotal role in the pathogenesis of obstructive sleep apnea. A more favorable structural upper airway property [pharyngeal critical pressure under hypotonic conditions (passive Pcrit)] has been documented for women. However, the role of sex-related modulation in compensatory responses to upper airway obstruction (UAO), independent of the passive Pcrit, remains unclear. Obese apneic men and women underwent a standard polysomnography and physiological sleep studies to determine sleep apnea severity, passive Pcrit, and compensatory airflow and respiratory timing responses to prolonged periods of UAO. Sixty-two apneic men and women, pairwise matched by passive Pcrit, exhibited similar sleep apnea disease severity during rapid eye movement (REM) sleep, but women had markedly less severe disease during non-REM (NREM) sleep. By further matching men and women by body mass index and age ( n = 24), we found that the lower NREM disease susceptibility in women was associated with an approximately twofold increase in peak inspiratory airflow ( P = 0.003) and inspiratory duty cycle ( P = 0.017) in response to prolonged periods of UAO and an ∼20% lower minute ventilation during baseline unobstructed breathing (ventilatory demand) ( P = 0.027). Thus, during UAO, women compared with men had greater upper airway and respiratory timing responses and a lower ventilatory demand that may account for sex differences in sleep-disordered breathing severity during NREM sleep, independent of upper airway structural properties and sleep apnea severity during REM sleep.


2007 ◽  
Vol 102 (2) ◽  
pp. 547-556 ◽  
Author(s):  
Susheel P. Patil ◽  
Hartmut Schneider ◽  
Jason J. Marx ◽  
Elizabeth Gladmon ◽  
Alan R. Schwartz ◽  
...  

Obstructive sleep apnea is caused by pharyngeal occlusion due to alterations in upper airway mechanical properties and/or disturbances in neuromuscular control. The objective of the study was to determine the relative contribution of mechanical loads and dynamic neuromuscular responses to pharyngeal collapse during sleep. Sixteen obstructive sleep apnea patients and sixteen normal subjects were matched on age, sex, and body mass index. Pharyngeal collapsibility, defined by the critical pressure, was measured during sleep. The critical pressure was partitioned between its passive mechanical properties (passive critical pressure) and active dynamic responses to upper airway obstruction (active critical pressure). Compared with normal subjects, sleep apnea patients demonstrated elevated mechanical loads as demonstrated by higher passive critical pressures [−0.05 (SD 2.4) vs. −4.5 cmH2O (SD 3.0), P = 0.0003]. Dynamic responses were depressed in sleep apnea patients, as suggested by failure to lower their active critical pressures [−1.6 (SD 3.5) vs. −11.1 cmH2O (SD 5.3), P < 0.0001] in response to upper airway obstruction. Moreover, elevated mechanical loads placed some normal individuals at risk for sleep apnea. In this subset, dynamic responses to upper airway obstruction compensated for mechanical loads and maintained airway patency by lowering the active critical pressure. The present study suggests that increased mechanical loads and blunted neuromuscular responses are both required for the development of obstructive sleep apnea.


2020 ◽  
Author(s):  
Huy Pho ◽  
Slava Berger ◽  
Carla Freire ◽  
Lenise J Kim ◽  
Mi-Kyung Shin ◽  
...  

ABSTRACTObesity can lead to recurrent upper airway obstruction (obstructive sleep apnea, OSA) during sleep as well as alveolar hypoventilation. We have previously shown that leptin stimulates breathing and treats OSA in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice. Our previous data also suggest that leptin’s respiratory effects may occur in the dorsomedial hypothalamus (DMH). We selectively expressed leptin receptor LepRb in the DMH neurons of obese LepRb-deficient db/db mice (LepRb-DMH mice), which hypoventilate at baseline, and showed that intracerebroventricular injection of leptin in these animals increased inspiratory flow, tidal volume and minute ventilation during NREM sleep without any effect on the quality of NREM sleep or CO2 production. Leptin had no effect on upper airway obstruction in LepRb-DMH animals. We conclude that leptin stimulates breathing and treats obesity related hypoventilation acting on LepRb-positive neurons in the DMH.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A474-A474
Author(s):  
Nishant Chaudhary ◽  
Mirna Ayache ◽  
John Carter

Abstract Introduction Positive airway pressure-induced upper airway obstruction has been reported with the treatment of obstructive sleep apnea (OSA) using continuous positive airway pressure (CPAP) along with an oronasal interface. Here we describe a case of persistent treatment emergent central sleep apnea (TECSA) inadequately treated with adaptive servo ventilation (ASV), with an airflow pattern suggestive of ASV-induced upper airway obstruction. Report of Case A 32-year-old male, with severe OSA (apnea hypopnea index: 52.4) and no other significant past medical history, was treated with CPAP and required higher pressures during titration sleep studies to alleviate obstructive events, despite a Mallampati Class II airway and a normal body mass index. Drug-Induced Sleep Endoscopy (DISE) showed a complete velopharynx and oropharynx anterior posterior (AP) collapse, long soft palate, which improved with neck extension. CPAP therapy, however, did not result in any symptomatic benefit and compliance reports revealed high residual AHI and persistent TECSA. He underwent an ASV titration sleep study up to a final setting of expiratory positive airway pressure 9 cm H2O, pressure support 6-15 cm H2O (auto-rate), with a full-face mask due to high oral leak associated with the nasal interface. The ASV device detected central apneas and provided mandatory breaths, but did not capture the thorax or abdomen, despite normal mask pressure tracings. Several such apneas occurred, with significant oxyhemoglobin desaturation. Conclusion We postulate that the ASV failure to correct central sleep apnea as evidenced by the absence of thoracoabdominal inspiratory effort, occurred due to ASV-induced upper airway obstruction. Further treatment options for this ASV phenomenon are to pursue an ASV-assisted DISE and determine the effectiveness of adjunctive therapy including neck extension, nasal mask with a mouth closing device and a mandibular assist device.


Author(s):  
Edmond Cohen

Upper airway obstruction (UAO) from any cause should be considered a life-threatening emergency. In a conscious patient, UAO may present as respiratory distress, stridor, dyspnoea, altered voice, cyanosis, cough, decreased or absent breath sounds, wheezing, the hand-to-the-throat choking sign in the case of a foreign body, facial swelling, and distended neck veins. The cause of UAO should be identified and airway management devices must be immediately available prior to any airway manipulation CT scan, flexible bronchoscopy, and pulmonary function tests should be performed to evaluate the cause and the extent of the obstruction. Obstructive sleep apnoea (OSA) patients are at increased risk of developing UAO. Endotracheal intubation, insertion of a supraglottic device, laser therapy, and endotracheal stents maybe life-saving


1986 ◽  
Vol 94 (4) ◽  
pp. 476-480 ◽  
Author(s):  
William P. Potsic ◽  
Patrick S. Pasquariello ◽  
Christine Corso Baranak ◽  
Roger R. Marsh ◽  
Linda M. Miller

Adenotonsillectomy is often performed to relieve upper airway obstruction, even in children who do not present with severe apnea. Although adenotonsillectomy provides dramatic relief from obstructive sleep apnea, little evidence is available as to the efficacy of surgery in the far more prevalent cases of partial airway obstruction. We report the results of a prospective study of 100 children with adenotonsillar obstruction (without severe apnea) and 50 age-matched control children. The majority of patients exhibited appreciable sleep disturbances preoperatively, as compared to controls, and had substantial postoperative improvement, as demonstrated by parental questionnaire and sleep sonography—the computer-aided analysis of respiratory sounds. Mouth breathing and behavior problems were also prevalent preoperatively and were affected positively by adenotonsillectomy. It appears that surgery in such cases can have far-ranging benefits, even for the child whose obstruction does not demonstrate severe apnea.


2019 ◽  
Vol 65 (6) ◽  
pp. 642-645
Author(s):  
Abate Yeshidinber Weldetsadik ◽  
Alemayehu Bedane ◽  
Frank Riedel

Abstract Retropharyngeal tuberculous abscess (RPTBA) is a rare manifestation of tuberculosis (TB) even in high TB burden areas. It rarely manifests as a cause of upper airway obstruction and obstructive sleep apnea (OSA) in children with few case reports in the literature. We report a 22 months old toddler who presented with upper airway obstruction and OSA and was diagnosed with RPTBA. The child recovered completely and growing normally after intra-oral aspiration and 6 months of anti-tuberculosis treatment.


Sign in / Sign up

Export Citation Format

Share Document