Spontaneous action potential generation due to persistent sodium channel currents in simulated carotid body afferent fibers

2008 ◽  
Vol 104 (5) ◽  
pp. 1394-1401 ◽  
Author(s):  
David F. Donnelly

The mechanism by which action potentials (APs) are generated in afferent nerve fibers in the carotid body is unknown, but it is generally speculated to be release of an excitatory transmitter and synaptic depolarizing events. However, previous results suggested that Na+ channels in the afferent nerve fibers play an important role in this process. To better understand the potential mechanism by which Na+ channels may generate APs, a mathematical model of chemoreceptor nerve fibers that incorporated Hodgkin-Huxley-type Na+ channels with kinetics of activation and inactivation, as determined previously from recordings of petrosal chemoreceptor neurons, was constructed. While the density of Na+ channels was kept constant, spontaneous APs arose in nerve terminals as the axonal diameter was reduced to that in rat carotid body. AP excitability and pattern were similar to those observed in chemoreceptor recordings: 1) a random pattern at low- and high-frequency discharge rates, 2) a high sensitivity to reductions in extracellular Na+ concentration, and 3) a variation in excitability that increased with AP generation rate. Taken together, the results suggest that an endogenous process in chemoreceptor nerve terminals may underlie AP generation, a process independent of synaptic depolarizing events.

2019 ◽  
Vol 60 (2) ◽  
pp. 202-210 ◽  
Author(s):  
Judith M. Lionarons ◽  
Govert Hoogland ◽  
Ruben G. F. Hendriksen ◽  
Catharina G. Faber ◽  
Danique M. J. Hellebrekers ◽  
...  

1929 ◽  
Vol 26 (4) ◽  
pp. 288-289
Author(s):  
C. D. Leake ◽  
A. G. Kammer ◽  
J. B. Hitz

1980 ◽  
Vol 44 (6) ◽  
pp. 1077-1088 ◽  
Author(s):  
Y. Hayashida ◽  
H. Koyano ◽  
C. Eyzaguirre

1. The carotid body and its nerve, removed from anesthetized cats, were placed in physiological saline flowing under paraffin oil. The nerve, lifted into the oil, was used for either electrical stimulation or recording of the total afferent discharge. Intracellular recordings were obtained from individual nerve fibers and endings within the carotid body. The recording sites were identified by injecting Procion yellow through the intracellular electrodes; the tissues were then prepared for histology and observed with episcopic fluorescence or Nomarski optics. 2. Intracellularly recorded chemosensory fibers conducted at 1.1-30 m/s and usually displayed action potentials of regular amplitude. At times, however, some spikes become partially blocked while others maintained their original amplitude. "Natural" (hypoxia) or chemical (ACh or NaCN) stimulation induced different patterns of frequency changes of the large and small action potentials. This indicated nerve fiber branching at some distance from the recording site. 3. Intra- and extracellularly recorded spikes were blocked in 0 [Na+]0 by tetrodotoxin (TTX) or procaine. 4. During chemical stimulation, a slowly occurring depolarization (receptor or generator potential) was recorded intracellularly from the afferent fibers. It developed concomitantly with the increase in discharge. 5. Impalement of single nerve terminals (histologically identified) showed numerous "spontaneous" depolarizing potentials (SDPs) that had a mean amplitude of 5.6 mV, a mean duration of 46.1 ms, and nearly random distribution. They increased in frequency and summated during chemical stimulation. SDPs originated from either the site of recording or from neighboring areas. When the SDPs attained a certain amplitude, they seemed to give rise to action potentials. Also, relatively well developed or partially blocked spikes (apparently originating elsewhere) were recorded from single nerve terminals. 6. The receptor (generator) potential of chemosensory receptors appears to be an integrated response formed by multiple activity originating in different nerve endings.


Sign in / Sign up

Export Citation Format

Share Document