afferent nerve fibers
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 14)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Nathaniel B Sawtell ◽  
Krista Perks

The latency of spikes relative to a stimulus conveys sensory information across modalities. However, in most cases it remains unclear whether and how such latency codes are utilized by postsynaptic neurons. In the active electrosensory system of mormyrid fish, a latency code for stimulus amplitude in electroreceptor afferent nerve fibers (EAs) is hypothesized to be read out by a central reference provided by motor corollary discharge (CD). Here we demonstrate that CD enhances sensory responses in postsynaptic granular cells of the electrosensory lobe, but is not required for reading out EA input. Instead, diverse latency and spike count tuning across the EA population gives rise to graded information about stimulus amplitude that can be read out by standard integration of converging excitatory synaptic inputs. Inhibitory control over the temporal window of integration renders two granular cell subclasses differentially sensitive to information derived from relative spike latency versus spike count.


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Heather N. Turner ◽  
Emily R. Liman

Sour taste, the taste of acids, is one of the most enigmatic of the five basic taste qualities; its function is unclear and its receptor was until recently unknown. Sour tastes are transduced in taste buds on the tongue and palate epithelium by a subset of taste receptor cells, known as type III cells. Type III cells express a number of unique markers, including the PKD2L1 gene, which allow for their identification and manipulation. These cells respond to acid stimuli with action potentials and release neurotransmitters onto afferent nerve fibers, with cell bodies in geniculate and petrosal ganglia. Here, we review classical studies of sour taste leading up to the identification of the sour receptor as the proton channel, OTOP1. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
David M. Page ◽  
Jacob A. George ◽  
Suzanne M. Wendelken ◽  
Tyler S. Davis ◽  
David T. Kluger ◽  
...  

Abstract Background Electrical stimulation of residual afferent nerve fibers can evoke sensations from a missing limb after amputation, and bionic arms endowed with artificial sensory feedback have been shown to confer functional and psychological benefits. Here we explore the extent to which artificial sensations can be discriminated based on location, quality, and intensity. Methods We implanted Utah Slanted Electrode Arrays (USEAs) in the arm nerves of three transradial amputees and delivered electrical stimulation via different electrodes and frequencies to produce sensations on the missing hand with various locations, qualities, and intensities. Participants performed blind discrimination trials to discriminate among these artificial sensations. Results Participants successfully discriminated cutaneous and proprioceptive sensations ranging in location, quality and intensity. Performance was significantly greater than chance for all discrimination tasks, including discrimination among up to ten different cutaneous location-intensity combinations (15/30 successes, p < 0.0001) and seven different proprioceptive location-intensity combinations (21/40 successes, p < 0.0001). Variations in the site of stimulation within the nerve, via electrode selection, enabled discrimination among up to five locations and qualities (35/35 successes, p < 0.0001). Variations in the stimulation frequency enabled discrimination among four different intensities at the same location (13/20 successes, p < 0.0005). One participant also discriminated among individual stimulation of two different USEA electrodes, simultaneous stimulation on both electrodes, and interleaved stimulation on both electrodes (20/24 successes, p < 0.0001). Conclusion Electrode location, stimulation frequency, and stimulation pattern can be modulated to evoke functionally discriminable sensations with a range of locations, qualities, and intensities. This rich source of artificial sensory feedback may enhance functional performance and embodiment of bionic arms endowed with a sense of touch.


2020 ◽  
Vol 472 (12) ◽  
pp. 1705-1717
Author(s):  
Kristina Rodionova ◽  
Karl F. Hilgers ◽  
Eva-Maria Paulus ◽  
Gisa Tiegs ◽  
Christian Ott ◽  
...  

AbstractWe demonstrated earlier that renal afferent pathways combine very likely “classical” neural signal transduction to the central nervous system and a substance P (SP)–dependent mechanism to control sympathetic activity. SP content of afferent sensory neurons is known to mediate neurogenic inflammation upon release. We tested the hypothesis that alterations in SP-dependent mechanisms of renal innervation contribute to experimental nephritis. Nephritis was induced by OX-7 antibodies in rats, 6 days later instrumented for recording of blood pressure (BP), heart rate (HR), drug administration, and intrarenal administration (IRA) of the TRPV1 agonist capsaicin to stimulate afferent renal nerve pathways containing SP and electrodes for renal sympathetic nerve activity (RSNA). The presence of the SP receptor NK-1 on renal immune cells was assessed by FACS. IRA capsaicin decreased RSNA from 62.4 ± 5.1 to 21.6 ± 1.5 mV s (*p < 0.05) in controls, a response impaired in nephritis. Suppressed RSNA transiently but completely recovered after systemic administration of a neurokinin 1 (NK1-R) blocker. NK-1 receptors occurred mainly on CD11+ dendritic cells (DCs). An enhanced frequency of CD11c+NK1R+ cell, NK-1 receptor+ macrophages, and DCs was assessed in nephritis. Administration of the NK-1R antagonist aprepitant during nephritis reduced CD11c+NK1R+ cells, macrophage infiltration, renal expression of chemokines, and markers of sclerosis. Hence, SP promoted renal inflammation by weakening sympathoinhibitory mechanisms, while at the same time, substance SP released intrarenally from afferent nerve fibers aggravated immunological processes i.e. by the recruitment of DCs.


2020 ◽  
Vol 100 (4) ◽  
pp. 1621-1705 ◽  
Author(s):  
Marianela G. Dalghi ◽  
Nicolas Montalbetti ◽  
Marcelo D. Carattino ◽  
Gerard Apodaca

The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.


2020 ◽  
Vol 20 (9) ◽  
pp. 5515-5519
Author(s):  
Kwon Woo Kang ◽  
Rudra Pangeni ◽  
JinWoo Park ◽  
Jaekwang Lee ◽  
Eunyoung Yi

Hearing loss is one of the major complications of diabetes mellitus and significantly lowers the quality of life of diabetic patients. In studies using diabetic animal models hearing loss have been frequently associated with damages to cochlear afferent fibers. Recent studies suggested that cochlear afferent neurons are composed of heterogeneous populations and a subgroup of neurons equipped with low level of calretinin might be more vulnerable to various noxious stimuli such as noise and neurotoxins. Here, we tested if cochlear afferent neurons deficient in the Ca2+-buffering protein calretinin are more vulnerable to hyperglycemic insults. Streptozotocin-induced (50 mg/kg, i.p.) hyperglycemic mice (>250 mg/dl) were tested. The expression patterns of calretinin in peripheral processes and the cell bodies of cochlear afferent nerve fibers were examined using immunohistochemistry and confocal microscopy. The proportion of calretinin-poor cochlear afferent fibers was much lower in hyperglycemic mice compared to the normoglycemic control group. (30.0 vs. 55.5% in the peripheral process; 15.7 vs. 24.4 % in spiral ganglion neuron). The results suggest that calretinin-poor cochlear nerve fibers may be selectively lost after the hyperglycemic insults. The finding also supports a calretinin’s neuroprotective role against diabetic neuropathy in cochlear afferent neurons.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Enzo Mastinu ◽  
Leonard F. Engels ◽  
Francesco Clemente ◽  
Mariama Dione ◽  
Paolo Sassu ◽  
...  

Abstract Conventional prosthetic arms suffer from poor controllability and lack of sensory feedback. Owing to the absence of tactile sensory information, prosthetic users must rely on incidental visual and auditory cues. In this study, we investigated the effect of providing tactile perception on motor coordination during routine grasping and grasping under uncertainty. Three transhumeral amputees were implanted with an osseointegrated percutaneous implant system for direct skeletal attachment and bidirectional communication with implanted neuromuscular electrodes. This neuromusculoskeletal prosthesis is a novel concept of artificial limb replacement that allows to extract control signals from electrodes implanted on viable muscle tissue, and to stimulate severed afferent nerve fibers to provide somatosensory feedback. Subjects received tactile feedback using three biologically inspired stimulation paradigms while performing a pick and lift test. The grasped object was instrumented to record grasping and lifting forces and its weight was either constant or unexpectedly changed in between trials. The results were also compared to the no-feedback control condition. Our findings confirm, in line with the neuroscientific literature, that somatosensory feedback is necessary for motor coordination during grasping. Our results also indicate that feedback is more relevant under uncertainty, and its effectiveness can be influenced by the selected neuromodulation paradigm and arguably also the prior experience of the prosthesis user.


2020 ◽  
Vol 158 (6) ◽  
pp. S-803
Author(s):  
Mayur Patil ◽  
Jana Harsanyiova ◽  
Seol-Hee Kim ◽  
Thomas E. Taylor-Clark ◽  
Marian Kollarik

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Tilmann Ditting ◽  
Kristina Rodionova ◽  
Peter Reeh ◽  
Miriam Eberhard ◽  
Roland Albert Veelken

2019 ◽  
Vol 13 (17) ◽  
pp. 1447-1457 ◽  
Author(s):  
Sarah F Hamm-Alvarez ◽  
Srikanth R Janga ◽  
Maria C Edman ◽  
Danielle Feigenbaum ◽  
Daniel Freire ◽  
...  

Aim: Due to active engagement of sensory and afferent nerve fibers in reflex tearing which could be affected in Parkinson's disease (PD), we tested reflex tears as a source of potential PD biomarkers. Patients & methods: Reflex tears collected from 84 PD and 84 age- and sex-equivalent healthy controls (HC) were used to measure levels of oligomeric α-Syn (α-SynOligo), total α-Syn (α-SynTotal), CCL2, DJ-1, lactoferrin and MMP9. Results: α-synOligo (p < 0.0001), CCL2 (p = 0.003) and lactoferrin (p = 0.002) were significantly elevated in PD patient tears relative to HC tears. Tear flow was significantly lower in PD relative to HC (p = 0.001). Conclusion: Reflex tears are a potential source for detection of characteristic changes in PD patients.


Sign in / Sign up

Export Citation Format

Share Document