scholarly journals Elucidating the neural circuitry underlying planning of internally-guided voluntary action

2016 ◽  
Vol 116 (6) ◽  
pp. 2469-2472
Author(s):  
Michelle Marneweck ◽  
Véronique H. Flamand

In an attempt to elucidate the neural circuitry of planning of internally guided voluntary action, Ariani et al. (2015) used a delayed-movement design and multivariate pattern analysis of functional MRI data and found areas decoding internally elicited action plans, stimulus-elicited action plans, and both types of plans. In interpreting their results in the context of a heuristic decision model of voluntary action, encompassing “what” action to perform, “when” to perform it, and “whether” to perform it at all, we highlight at least some neural dissociation of these components. More to that, we note that the exact neural circuitry of each component might vary depending on the performed action type, and finally, we underscore the importance of understanding the temporal specifics of such circuitries to further elucidate how they are involved and interact during voluntary action planning.

2019 ◽  
Author(s):  
Zhiai Li ◽  
Hongbo Yu ◽  
Yongdi Zhou ◽  
Tobias Kalenscher ◽  
Xiaolin Zhou

AbstractPeople do not only feel guilty for transgressions of social norms/expectations that they are causally responsible for, but they also feel guilty for transgressions committed by those they identify as in-group (i.e., collective or group-based guilt). However, the neurocognitive basis of group-based guilt and its relation to personal guilt are unknown. To address these questions, we combined functional MRI with an interaction-based minimal group paradigm in which participants either directly caused harm to victims (i.e., personal guilt), or observed in-group members cause harm to the victims (i.e., group-based guilt). In three experiments (N = 90), we demonstrated that perceived shared responsibility with in-group members in the transgression predicted behavioral and neural manifestations of group-based guilt. Multivariate pattern analysis of the functional MRI data showed that group-based guilt recruited a similar brain representation in anterior middle cingulate cortex as personal guilt. These results have broaden our understanding of how group membership is integrated into social emotions.


Children ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 186
Author(s):  
Valeria Calcaterra ◽  
Giacomo Biganzoli ◽  
Gloria Pelizzo ◽  
Hellas Cena ◽  
Alessandra Rizzuto ◽  
...  

Background: The prevalence of pediatric metabolic syndrome is usually closely linked to overweight and obesity; however, this condition has also been described in children with disabilities. We performed a multivariate pattern analysis of metabolic profiles in neurologically impaired children and adolescents in order to reveal patterns and crucial biomarkers among highly interrelated variables. Patients and methods: We retrospectively reviewed 44 cases of patients (25M/19F, mean age 12.9 ± 8.0) with severe disabilities. Clinical and anthropometric parameters, body composition, blood pressure, and metabolic and endocrinological assessment (fasting blood glucose, insulin, total cholesterol, high-density lipoprotein cholesterol, triglycerides, glutamic oxaloacetic transaminase, glutamate pyruvate transaminase, gamma-glutamyl transpeptidase) were recorded in all patients. As a control group, we evaluated 120 healthy children and adolescents (61M/59F, mean age 12.9 ± 2.7). Results: In the univariate analysis, the children-with-disabilities group showed a more dispersed distribution, thus with higher variability of the features related to glucose metabolism and insulin resistance (IR) compared to the healthy controls. The principal component (PC1), which emerged from the PC analysis conducted on the merged dataset and characterized by these variables, was crucial in describing the differences between the children-with-disabilities group and controls. Conclusion: Children and adolescents with disabilities displayed a different metabolic profile compared to controls. Metabolic syndrome (MetS), particularly glucose metabolism and IR, is a crucial point to consider in the treatment and care of this fragile pediatric population. Early detection of the interrelated variables and intervention on these modifiable risk factors for metabolic disturbances play a central role in pediatric health and life expectancy in patients with a severe disability.


Sign in / Sign up

Export Citation Format

Share Document