scholarly journals Interhemispheric dominance switching in a neural network model for birdsong

2018 ◽  
Vol 120 (3) ◽  
pp. 1186-1197 ◽  
Author(s):  
Daniel Galvis ◽  
Wei Wu ◽  
Richard L. Hyson ◽  
Frank Johnson ◽  
Richard Bertram

Male zebra finches produce a sequence-invariant set of syllables, separated by short inspiratory gaps. These songs are learned from an adult tutor and maintained throughout life, making them a tractable model system for learned, sequentially ordered behaviors, particularly speech production. Moreover, much is known about the cortical, thalamic, and brain stem areas involved in producing this behavior, with the premotor cortical nucleus HVC (proper name) being of primary importance. In a previous study, our group developed a behavioral neural network model for birdsong constrained by the structural connectivity of the song system, the signaling properties of individual neurons and circuits, and circuit-breaking behavioral studies. Here we describe a more computationally tractable model and use it to explain the behavioral effects of unilateral cooling and electrical stimulations of HVC on song production. The model demonstrates that interhemispheric switching of song control is sufficient to explain these results, consistent with the hypotheses proposed when the experiments were initially conducted. Finally, we use the model to make testable predictions that can be used to validate the model framework and explain the effects of other perturbations of the song system, such as unilateral ablations of the primary input and output nuclei of HVC. NEW & NOTEWORTHY In this report, we propose a two-hemisphere neural network model for the bilaterally symmetrical song system underlying birdsong in the male zebra finch. This model captures the behavioral effects of unilateral cooling and electrical stimulations of the premotor cortical nucleus HVC during song production, supporting the hypothesis of interhemispheric switching of song control. We use the model to make testable predictions regarding the behavioral effects of other unilateral perturbations to the song system.

2017 ◽  
Vol 118 (2) ◽  
pp. 677-692 ◽  
Author(s):  
Daniel Galvis ◽  
Wei Wu ◽  
Richard L. Hyson ◽  
Frank Johnson ◽  
Richard Bertram

Zebra finch song consists of a string of syllables repeated in a nearly invariant sequence. We propose a neural network organization that can explain recent data indicating that the medial and lateral portions of the premotor cortical nucleus HVC have different roles in zebra finch song production. Our model explains these data, as well as data on the effects on song of cooling HVC, and makes predictions that we test in the singing bird.


2021 ◽  
Vol 17 (10) ◽  
pp. 155014772110537
Author(s):  
Sobia Wassan ◽  
Chen Xi ◽  
NZ Jhanjhi ◽  
Laiqa Binte-Imran

Climate change brings many changes in a physical environment like plants and leaves. The flowers and plants get affected by natural climate and local weather extremes. However, the projected increase in the frost event causes sensitivity in plant reproduction and plant structure vegetation. The timing of growing and reproduction might be an essential tactic by which plant life can avoid frost. Flowers are more sensitive to hoarfrost than leaves but more sensitive to frost in most cases. In most cases, frost affects the size of the plant, its growth, and the production of seeds. In this article, we examined that how frost affects plants and flowers? How it affects the roots and prevents the growth of plants, vegetables, and fruits? Furthermore, we predicted how the frost will grow and how we should take early precautions to protect our crops? We presented the convolutional neural network model framework and used the conv1d algorithm to evaluate one-dimensional data for frost event prediction. Then, as part of our model contribution, we preprocessed the data set. The results were comparable to four weather stations in the United States. The results showed that our convolutional neural network model configuration is reliable.


Author(s):  
Seetharam .K ◽  
Sharana Basava Gowda ◽  
. Varadaraj

In Software engineering software metrics play wide and deeper scope. Many projects fail because of risks in software engineering development[1]t. Among various risk factors creeping is also one factor. The paper discusses approximate volume of creeping requirements that occur after the completion of the nominal requirements phase. This is using software size measured in function points at four different levels. The major risk factors are depending both directly and indirectly associated with software size of development. Hence It is possible to predict risk due to creeping cause using size.


Sign in / Sign up

Export Citation Format

Share Document