scholarly journals Blockade of in vitro ictogenesis by low-frequency stimulation coincides with increased epileptiform response latency

2015 ◽  
Vol 114 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Toshiyuki Kano ◽  
Yuji Inaba ◽  
Margherita D'Antuono ◽  
Giuseppe Biagini ◽  
Maxime Levésque ◽  
...  

Low-frequency stimulation, delivered through transcranial magnetic or deep-brain electrical procedures, reduces seizures in patients with pharmacoresistant epilepsy. A similar control of ictallike discharges is exerted by low-frequency electrical stimulation in rodent brain slices maintained in vitro during convulsant treatment. By employing field and “sharp” intracellular recordings, we analyzed here the effects of stimuli delivered at 0.1 or 1 Hz in the lateral nucleus of the amygdala on ictallike epileptiform discharges induced by the K+ channel blocker 4-aminopyridine in the perirhinal cortex, in a rat brain slice preparation. We found that 1) ictal events were nominally abolished when the stimulus rate was brought from 0.1 to 1 Hz; 2) this effect was associated with an increased latency of the epileptiform responses recorded in perirhinal cortex following each stimulus; and 3) both changes recovered to control values following arrest of the 1-Hz stimulation protocol. The control of ictal activity by 1-Hz stimulation and the concomitant latency increase were significantly reduced by GABAB receptor antagonism. We propose that this frequency-dependent increase in latency represents a short-lasting, GABAB receptor-dependent adaptive mechanism that contributes to decrease epileptiform synchronization, thus blocking seizures in epileptic patients and animal models.

2007 ◽  
Vol 97 (3) ◽  
pp. 1887-1902 ◽  
Author(s):  
Yitzhak Schiller ◽  
Yael Bankirer

Approximately 30% of epilepsy patients suffer from drug-resistant epilepsy. Direct electrical stimulation of the epileptogenic zone is a potential new treatment modality for this devastating disease. In this study, we investigated the effect of two electrical stimulation paradigms, sustained low-frequency stimulation and short trains of high-frequency stimulation, on epileptiform discharges in neocortical brain slices treated with either bicuculline or magnesium-free extracellular solution. Sustained low-frequency stimulation (5–30 min of 0.1- to 5-Hz stimulation) prevented both interictal-like discharges and seizure-like events in an intensity-, frequency-, and distance-dependent manner. Short trains of high-frequency stimulation (1–5 s of 25- to 200-Hz stimulation) prematurely terminated seizure-like events in a frequency-, intensity-, and duration-dependent manner. Roughly one half the seizures terminated within the 100-Hz stimulation train ( P < 0.01 compared with control), whereas the remaining seizures were significantly shortened by 53 ± 21% ( P < 0.01). Regarding the cellular mechanisms underlying the antiepileptic effects of electrical stimulation, both low- and high-frequency stimulation markedly depressed excitatory postsynaptic potentials (EPSPs). The EPSP amplitude decreased by 75 ± 3% after 10-min, 1-Hz stimulation and by 86 ± 6% after 1-s, 100-Hz stimulation. Moreover, partial pharmacological blockade of ionotropic glutamate receptors was sufficient to suppress epileptiform discharges and enhance the antiepileptic effects of stimulation. In conclusion, this study showed that both low- and high-frequency electrical stimulation possessed antiepileptic effects in the neocortex in vitro, established the parameters determining the antiepileptic efficacy of both stimulation paradigms, and suggested that the antiepileptic effects of stimulation were mediated mostly by short-term synaptic depression of excitatory neurotransmission.


2020 ◽  
Author(s):  
Shumsuzzaman Khan

AbstractIn reward-based learning, synaptic eligibility traces are a well-defined theoretical solution for the conversion of initial co-activation of pre and postsynaptic neurons into long-term changes in synaptic strength by reward-linked neuromodulators. However, the types of neuromodulators involved in such a phenomenon in mouse visual cortex remain unknown. To characterize the Ex vivo condition, we used optogenetic stimulation of channelrhodopsin-(ChR2) expressing Cre/Ai32(ChR2-eYFP); Tph2-Cre/Ai32(ChR2-eYFP); Thi-Cre/Ai32(ChR2-eYFP) homozygous mice, which release acetylcholine, serotonin, and norepinephrine, respectively. With these mice it is possible to measure the transformation of eligibility traces into long-term changes by endogenous neuromodulators. Here we delineated that layer 2/3 neurons in the visual cortex showed no LTD after conditioning with paired-pulse low-frequency stimulation (ppLFS; 2Hz, 15 min). However, if conditioning was paired with acetylcholine, serotonin, or norepinephrine release upon 473 nm optical stimulation in brain slices, LTD occurs in every case. Thus, our data suggests a new pathway to connect the gap between stimulus and reward. Moreover, we found that stimulation by theta-glass or metal stimulators evoked IPSC traces with the same amplitudes but differences in decay kinetics, further questioning the appropriate use of stimulators in brain slices for evoking an event.


2021 ◽  
Author(s):  
Shumsuzzaman Khan

Abstract In reward-based learning, synaptic eligibility traces are a well-defined theoretical solution for the conversion of initial co-activation of pre and postsynaptic neurons into long-term changes in synaptic strength by reward-linked neuromodulators. However, the types of neuromodulators involved in such a phenomenon in mouse visual cortex remain unknown. To characterize the Ex vivo condition, we used optogenetic stimulation of channelrhodopsin-(ChR2) expressing Cre/Ai32(ChR2-eYFP); Tph2-Cre/Ai32(ChR2-eYFP); Thi-Cre/Ai32(ChR2-eYFP) homozygous mice, which release acetylcholine, serotonin, and norepinephrine, respectively. With these mice it is possible to measure the transformation of eligibility traces into long-term changes by endogenous neuromodulators. Here we delineated that layer 2/3 neurons in the visual cortex showed no LTD after conditioning with paired-pulse low-frequency stimulation (ppLFS; 2Hz, 15 min). However, if conditioning was paired with acetylcholine, serotonin, or norepinephrine release upon 473 nm optical stimulation in brain slices, LTD occurs in every case. Thus, our data suggests a new pathway to connect the gap between stimulus and reward. Moreover, we found that stimulation by theta-glass or metal stimulators evoked IPSC traces with the same amplitudes but differences in decay kinetics, further questioning the appropriate use of stimulators in brain slices for evoking an event.


1986 ◽  
Vol 239 (2) ◽  
pp. 295-300 ◽  
Author(s):  
E Leberer ◽  
U Seedorf ◽  
D Pette

Tissue contents of the sarcoplasmic-reticulum Ca2+-ATPase (Ca2+ +Mg2+-dependent ATPase), of calsequestrin and of parvalbumin were immunochemically quantified in homogenates of fast- and slow-twitch muscles of embryonic, maturing and adult rabbits. Unlike parvalbumin, Ca2+-ATPase and calsequestrin were expressed in embryonic muscles. Presumptive fast-twitch muscles displayed higher contents of these two proteins than did presumptive slow-twitch muscles. Calsequestrin steeply increased before birth and reached adult values in the two muscle types 4 days after birth. The main increase in Ca2+-ATPase occurred during the first 2 weeks after birth. Denervation of postnatal fast- and slow-twitch muscles decreased calsequestrin to amounts typical of embryonic muscle and suppressed further increases of Ca2+-ATPase. Denervation caused slight decreases in Ca2+-ATPase in adult fast-twitch, but not in slow-twitch, muscles, whereas calsequestrin was greatly decreased in both. Chronic low-frequency stimulation induced a rapid decrease in parvalbumin in fast-twitch muscle, which was preceded by a drastic decrease in the amount of its polyadenylated RNA translatable in vitro. Tissue amounts of Ca2+-ATPase and calsequestrin were essentially unaltered up to periods of 52 days stimulation. These results indicate that in fast- and slow-twitch muscles different basal amounts of Ca2+-ATPase and calsequestrin are expressed independent of innervation, but that neuromuscular activity has a modulatory effect. Conversely, the expression of parvalbumin is greatly enhanced by phasic, and drastically decreased by tonic, motor-neuron activity.


1987 ◽  
Vol 62 (4) ◽  
pp. 1392-1397 ◽  
Author(s):  
J. M. Metzger ◽  
R. H. Fitts

Intracellular pH of in vitro diaphragm preparations was determined following low- (5 Hz, 1.5 min) and high- (75 Hz, 1 min) frequency stimulation, using glass microelectrodes of the liquid membrane type (pHm). Results were compared with values obtained by the standard homogenate technique (pHh). High- and low-frequency stimulation reduced peak tetanic tension to 21 +/- 1 (SE) and 71 +/- 2% of initial values, respectively. Peak tetanic tension returned to resting values after 10- to 15-min recovery from high- or low-frequency stimulation. Resting pHm was 7.063 +/- 0.011 (n = 72), and after fatiguing stimulation declined to values as low as 6.33. During recovery pHm significantly increased and by 10 min had returned to prefatigue values. No difference was observed in the recovery of pHm between the low- and high-frequency stimulation groups (analysis of variance test, ANOVA), and in both groups pHm recovery was highly correlated to the recovery of peak tetanic tension (r = 0.94, P less than 0.001). Resting pHh was 7.219 +/- 0.023 (n = 13), which was significantly higher than the pHm value. In contrast to pHm, intracellular pHh was significantly higher during recovery from 75- vs. 5-Hz stimulation (P less than 0.05). For both groups pHh increased significantly with time and by 10 min returned to prestimulation values. The ANOVA test demonstrated that pHh values were significantly higher than pHm values during recovery from fatigue. The results from this study support our hypothesis that fatigue from both high- and low-frequency stimulation is at least partially due to the deleterious effects of intracellular acidosis on excitation-contraction coupling.


2017 ◽  
Author(s):  
Frédéric Doussau ◽  
Hartmut Schmidt ◽  
Kevin Dorgans ◽  
Antoine M. Valera ◽  
Bernard Poulain ◽  
...  

ABSTRACTThe segregation of the readily releasable pool of synaptic vesicles (RRP) in sub-pool which are differentially poised for exocytosis shapes short-term plasticity at depressing synapses. Here, we used in vitro recording and modeling of synaptic activity at the facilitating mice cerebellar granule cell to Purkinje cell synapse to demonstrate the existence of two sub-pools of vesicles in the RRP that can be differentially recruited upon fast changes in the stimulation frequency. We show that upon low-frequency stimulation, a population of fully-releasable vesicles is silenced, leading to full blockage of synaptic transmission. A second population of vesicles, reluctant to release by simple stimuli, is recruited in a millisecond time scale by high-frequency stimulation to support an ultrafast recovery of neurotransmitter release after low-frequency depression. The frequency-dependent mobilization or silencing of sub-pools of vesicles in granule cell terminals should play a major role in the filtering of sensorimotor information in the cerebellum.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Haiyu Liu ◽  
Sai Zhang ◽  
Liang Zhang

Abstract Background Rodent brain slices—particularly hippocampal slices—are widely used in experimental investigations of epileptiform activity. Oxygenated artificial cerebrospinal fluid (ACSF) is used to maintain slices in vitro. Physiological or standard ACSF containing 3–3.5 mM K+, 1–2 mM Mg2+, and 1–3 mM Ca2+ generally does not induce population epileptiform activity, which can be induced by ACSF with high K+ (8–10 mM), low Mg2+, or low Ca2+ alone or in combination. While low-Mg2+ ACSF without intentionally added Mg salt but with contaminating Mg2+ (≤ 50–80 µM) from other salts can induce robust epileptiform activity in slices, it is unclear whether such epileptiform activity can be achieved using ACSF with moderately decreased Mg2+. To explore this issue, we examined the effects of moderately modified (m)ACSF with 0.8 mM Mg2+, 1.3 mM Ca2+, and 5.7 mM K+ on induction of epileptiform discharges in mouse hippocampal slices. Results Hippocampal slices were prepared from young (21–28 days old), middle-aged (13–14 months old), and aged (24–26 months old) C57/BL6 mice. Conventional thin (0.4 mm) and thick (0.6 mm) slices were obtained using a vibratome and pretreated with mACSF at 35–36 °C for 1 h prior to recordings. During perfusion with mACSF at 35–36 °C, spontaneous or self-sustained epileptiform field potentials following high-frequency stimulation were frequently recorded in slices pretreated with mACSF but not in those without the pretreatment. Seizure-like ictal discharges were more common in thick slices than in thin slices. Conclusions Prolonged exposure to mACSF by pretreatment and subsequent perfusion can induce epileptiform field potentials in mouse hippocampal slices.


Sign in / Sign up

Export Citation Format

Share Document