Novel Form of Long-Term Synaptic Depression in Rat Hippocampus Induced By Activation of α1 Adrenergic Receptors

2004 ◽  
Vol 91 (2) ◽  
pp. 1071-1077 ◽  
Author(s):  
Cary L. Scheiderer ◽  
Lynn E. Dobrunz ◽  
Lori L. McMahon

Neurons located in the locus coeruleus project to hippocampus and provide noradrenergic innervation necessary for hippocampal-dependent learning and memory. The mechanisms underlying the function of norepinephrine (NE) in memory processing are unknown but likely reside in the ability of NE to modulate the efficacy of glutamate synaptic transmission via activation of G-protein-coupled adrenergic receptors. Here we show that application of NE to rat hippocampal slices in vitro induces a long-term depression (LTD) of synaptic transmission at excitatory CA3–CA1 synapses that persists for ≥40 min after agonist washout. This LTD, which we refer to as NE LTD, is mediated by activation of α1 adrenergic receptors because the α1 agonist methoxamine can induce LTD at the same magnitude as that induced with the nonselective adrenergic agonist NE. Furthermore, NE LTD induced by either NE or methoxamine is blocked with the α1 receptor antagonist, prazosin, but is unaffected by antagonists of α2 and β receptors. This plasticity persists in the presence of the GABAA receptor antagonist bicuculline, indicating that adrenergic modulation of GABAA receptor-mediated transmission does not underlie NE LTD. Induction of NE LTD requires presynaptic activity during agonist application and postsynaptic activation of N-methyl-d-aspartate receptors, fulfilling Hebbian criteria of coincident pre- and postsynaptic activity. The expression of NE LTD is likely to be postsynaptic because paired-pulse facilitation ratios during NE LTD expression are not different from baseline, similar to LTD induced by low-frequency stimulation. Thus we report the identification and characterization of a novel Hebbian form of LTD in hippocampus that is induced after activation of α1 adrenergic receptors. This plasticity may be a mechanism by which the adrenergic system participates in normal cognitive function.

1999 ◽  
Vol 81 (3) ◽  
pp. 1036-1044 ◽  
Author(s):  
Hannah Dvorak-Carbone ◽  
Erin M. Schuman

Long-term depression of temporoammonic-CA1 hippocampal synaptic transmission. The temporoammonic pathway, the direct projection from layer III of the entorhinal cortex to area CA1 of the hippocampus, includes both excitatory and inhibitory components that are positioned to be an important source of modulation of the hippocampal output. However, little is known about synaptic plasticity in this pathway. We used field recordings in hippocampal slices prepared from mature (6- to 8-wk old) rats to study long-term depression (LTD) in the temporoammonic pathway. Low-frequency (1 Hz) stimulation (LFS) for 10 min resulted in a depression of the field response that lasted for ≥1 h. This depression was saturable by multiple applications of LFS. LTD induction was unaffected by the blockade of either fast (GABAA) or slow (GABAB) inhibition. Temporoammonic LTD was inhibited by the presence of the N-methyl-d-aspartate (NMDA) receptor antagonist AP5, suggesting a dependence on calcium influx. Full recovery from depression could be induced by high-frequency (100 Hz) stimulation (HFS); in the presence of the GABAA antagonist bicuculline, HFS induced recovery above the original baseline level. Similarly, HFS or θ-burst stimulation (TBS) applied to naive slices caused little potentiation, whereas HFS or TBS applied in the presence of bicuculline resulted in significant potentiation of the temporoammonic response. Our results show that, unlike the Schaffer collateral input to CA1, the temporoammonic input in mature animals is easy to depress but difficult to potentiate.


2003 ◽  
Vol 89 (4) ◽  
pp. 2112-2119 ◽  
Author(s):  
Saı̈d Kourrich ◽  
C. Andrew Chapman

The entorhinal cortex receives a large projection from the piriform (primary olfactory) cortex and, in turn, provides the hippocampal formation with most of its cortical sensory input. Synaptic plasticity in this pathway may therefore affect the processing of olfactory information and memory encoding. We have recently found that long-term synaptic depression (LTD) can be induced in this pathway in vivo by repetitive paired-pulse stimulation but not by low-frequency (1 Hz) stimulation with single pulses. Here, we have used field potential recordings to investigate the stimulation parameters and transmitter receptors required for the induction of LTD in the rat entorhinal cortex in vitro. The effectiveness of low-frequency stimulation (900 pulses at 1 or 5 Hz) and repeated delivery of pairs of stimulation pulses (30-ms interpulse interval) was assessed. Only repeated paired-pulse stimulation resulted in lasting LTD, and a low-intensity paired-pulse stimulation protocol that induces LTD in vivo was only effective in the presence of the GABAA receptor antagonist bicuculline (50 μM). LTD could also be induced in normal ACSF, however, by increasing the number of pulse-pairs delivered and by increasing the stimulation intensity during LTD induction. The induction of LTD was blocked by constant bath application of the N-methyl-d-aspartate (NMDA) glutamate receptor antagonist d-2-amino-5-phosphonovalerate (50 μM), indicating that LTD is dependent on NMDA receptor activation. However, LTD was not blocked by the group I/II mGluR antagonist (RS)-α-ethyl-4-carboxyphenylglycine (500 μM) or by bicuculline (50 μM). The induction of LTD in the entorhinal cortex in vitro is therefore dependent on intense stimulation that recruits activation of NMDA receptors, but does not require concurrent activation of mGluRs or inhibitory synaptic inputs.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Giselle Cheung ◽  
Jérémie Sibille ◽  
Jonathan Zapata ◽  
Nathalie Rouach

Recent evidence has shown that astrocytes play essential roles in synaptic transmission and plasticity. Nevertheless, how neuronal activity alters astroglial functional properties and whether such properties also display specific forms of plasticity still remain elusive. Here, we review research findings supporting this aspect of astrocytes, focusing on their roles in the clearance of extracellular potassium and glutamate, two neuroactive substances promptly released during excitatory synaptic transmission. Their subsequent removal, which is primarily carried out by glial potassium channels and glutamate transporters, is essential for proper functioning of the brain. Similar to neurons, different forms of short- and long-term plasticity in astroglial uptake have been reported. In addition, we also present novel findings showing robust potentiation of astrocytic inward currents in response to repetitive stimulations at mild frequencies, as low as 0.75 Hz, in acute hippocampal slices. Interestingly, neurotransmission was hardly affected at this frequency range, suggesting that astrocytes may be more sensitive to low frequency stimulation and may exhibit stronger plasticity than neurons to prevent hyperexcitability. Taken together, these important findings strongly indicate that astrocytes display both short- and long-term plasticity in their clearance of excess neuroactive substances from the extracellular space, thereby regulating neuronal activity and brain homeostasis.


1996 ◽  
Vol 76 (3) ◽  
pp. 2097-2101 ◽  
Author(s):  
P. K. Stanton ◽  
A. T. Gage

1. Extracellular bath application of the selective Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor KN-62 to hippocampal slices in vitro blocked the induction of long-term depression (LTD) by low-frequency Schaffer collateral stimulation (1 Hz/15 min) of the same concentration as has been shown previously to prevent induction of long-term potentiation (LTP) at these synapses. 2. In contrast, postsynaptic intracellular infusion of KN-62 into single CA1 pyramidal neurons did not prevent induction of LTD, although it was quite effective in blocking LTP. 3. We conclude that there is a presynaptic CaMKII that must be activated to induce LTD, whereas postsynaptic CaMKII stimulation is needed to evoke LTP. 4. Bath application of KN-62 also blocked depotentiation by low-frequency stimuli of previously induced LTP, suggesting that induction of depotentiation and de novo LTD may require the same CaMKII-dependent mechanisms.


1996 ◽  
Vol 75 (2) ◽  
pp. 877-884 ◽  
Author(s):  
P. T. Huerta ◽  
J. E. Lisman

1. The induction of long-term weakening of synaptic transmission in rat hippocampal slices was examined in CA1 synapses during cholinergic modulation. 2. Bath application of the cholinergic agonist carbachol (50 microM) activated an oscillation of the local field potential in the theta-frequency range (5-12 Hz), termed theta. It was previously shown that a stimulation train of 40 single shocks (at 0.1 Hz) to the Schaffer collateral-commisural afferents, each synchronized with positive peaks of theta, caused homosynaptic long-term enhancement in CA1. Furthermore, long-term depression (LTD) was sporadically observed when the stimulation train was given at negative troughs of theta. Here we have sought to determine stable conditions for LTD induction during theta. 3. Synaptic weakening was reliably obtained, by giving 40 shocks (at 0.1 Hz) at theta-troughs, only in pathways that had been previously potentiated. This decrement, termed theta-LTD, was synapse specific because it did not occur in an independent pathway not stimulated during theta. The interval between the initial potentiating tetanus and theta-LTD induction could be as long as 90 min. 4. theta-LTD could be saturated; after consecutive episodes of theta-LTD induction, no significant further depression was obtained. Moreover, theta-LTD could be reversed by tetanic stimulation. 5. theta-LTD could prevent the induction of LTD by 600-900 pulses at 1 Hz. This suggests that the two protocols may share common mechanisms at the synaptic level. 6. We conclude that single presynaptic spikes that occur at low frequency and are properly timed to the troughs of theta may be a relevant mechanism for decreasing the strength of potentiated synapses.


1997 ◽  
Vol 77 (6) ◽  
pp. 3013-3020 ◽  
Author(s):  
Hiroshi Katsuki ◽  
Yukitoshi Izumi ◽  
Charles F. Zorumski

Katsuki, Hiroshi, Yukitoshi Izumi, and Charles F. Zorumski. Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. J. Neurophysiol. 77: 3013–3020, 1997. The effects of norepinephrine (NE) and related agents on long-lasting changes in synaptic efficacy induced by several patterns of afferent stimuli were investigated in the CA1 region of rat hippocampal slices. NE (10 μM) showed little effect on the induction of long-term potentiation (LTP) triggered by theta-burst-patterned stimulation, whereas it inhibited the induction of long-term depression (LTD) triggered by 900 pulses of 1-Hz stimulation. In nontreated slices, 900 pulses of stimuli induced LTD when applied at lower frequencies (1–3 Hz), and induced LTP when applied at a higher frequency (30 Hz). NE (10 μM) caused a shift of the frequency-response relationship in the direction preferring potentiation. The effect of NE was most prominent at a stimulus frequency of 10 Hz, which induced no changes in control slices but clearly induced LTP in the presence of NE. The facilitating effect of NE on the induction of LTP by 10-Hz stimulation was blocked by theβ-adrenergic receptor antagonist timolol (50 μM), but not by the α receptor antagonist phentolamine (50 μM), and was mimicked by the β-agonist isoproterenol (0.3 μM), but not by the α1 agonist phenylephrine (10 μM). The induction of LTD by 1-Hz stimulation was prevented by isoproterenol but not by phenylephrine, indicating that the activation of β-receptors is responsible for these effects of NE. NE (10 μM) also prevented the reversal of LTP (depotentiation) by 900 pulses of 1-Hz stimulation delivered 30 min after LTP induction. In contrast to effects on naive (nonpotentiated) synapses, the effect of NE on previously potentiated synapses was only partially mimicked by isoproterenol, but fully mimicked by coapplication of phenylephrine and isoproterenol. In addition, the effect of NE was attenuated either by phentolamine or by timolol, indicating that activation of both α1 and β-receptors is required. These results show that NE plays a modulatory role in the induction of hippocampal synaptic plasticity. Althoughβ-receptor activation is essential, α1 receptor activation is also necessary in determining effects on previously potentiated synapses.


1993 ◽  
Vol 69 (3) ◽  
pp. 1000-1004 ◽  
Author(s):  
Y. B. Liu ◽  
J. F. Disterhoft ◽  
N. T. Slater

1. The long-term enhancement of synaptic excitability in CA1 hippocampal pyramidal neurons produced by activation of metabotropic glutamate receptors (mGluRs) was studied in rabbit hippocampal slices in vitro. 2. Bath application of the mGluR agonist (1S,3R)-1-aminocyclopentane-1,3- dicarboxylic acid (1S,3R-ACPD) (5-20 microM) for 20 min produced a reversible depolarization of membrane potentiatil, blockade of spike accommodation, and increase in input resistance of CA1 neurons. However, a long-lasting increase in synaptic excitability was observed: single stimuli applied to the Schaffer collateral commisural fiber pathway evoked epileptiform discharges in the presence of 1S,3R-ACPD and after the washout of 1S,3R-ACPD, persistent paroxysmal depolarization shifts (PDSs) were evoked by afferent stimulation. A long-lasting enhancement of synaptic excitability was also observed in the presence of the NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5), which blocked the stimulation-evoked PDS and associated afterdischarges. 3. When biphasic, monosynaptically evoked inhibitory post-synaptic potentials (IPSPs) were recorded in the presence of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10–15 microM) and D-AP5 (20 microM), the bath application of 1S,3R-ACPD produced a significant reduction (approximately 50%) of both components of the IPSP, which persisted after the washout of the drug.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document