Generation of Spatiotemporally Correlated Spike Trains and Local Field Potentials Using a Multivariate Autoregressive Process

2010 ◽  
Vol 103 (5) ◽  
pp. 2912-2930 ◽  
Author(s):  
Diego A. Gutnisky ◽  
Krešimir Josić

Experimental advances allowing for the simultaneous recording of activity at multiple sites have significantly increased our understanding of the spatiotemporal patterns in neural activity. The impact of such patterns on neural coding is a fundamental question in neuroscience. The simulation of spike trains with predetermined activity patterns is therefore an important ingredient in the study of potential neural codes. Such artificially generated spike trains could also be used to manipulate cortical neurons in vitro and in vivo. Here, we propose a method to generate spike trains with given mean firing rates and cross-correlations. To capture this statistical structure we generate a point process by thresholding a stochastic process that is continuous in space and discrete in time. This stochastic process is obtained by filtering Gaussian noise through a multivariate autoregressive (AR) model. The parameters of the AR model are obtained by a nonlinear transformation of the point-process correlations to the continuous-process correlations. The proposed method is very efficient and allows for the simulation of large neural populations. It can be optimized to the structure of spatiotemporal correlations and generalized to nonstationary processes and spatiotemporal patterns of local field potentials and spike trains.

2015 ◽  
Vol 16 (Suppl 1) ◽  
pp. P194
Author(s):  
Jacob Yates ◽  
Evan Archer ◽  
Alexander C Huk ◽  
Il Memming Park

2018 ◽  
Vol 120 (4) ◽  
pp. 1625-1639 ◽  
Author(s):  
Vanessa L. Mock ◽  
Kimberly L. Luke ◽  
Jacqueline R. Hembrook-Short ◽  
Farran Briggs

Correlations and inferred causal interactions among local field potentials (LFPs) simultaneously recorded in distinct visual brain areas can provide insight into how visual and cognitive signals are communicated between neuronal populations. Based on the known anatomical connectivity of hierarchically organized visual cortical areas and electrophysiological measurements of LFP interactions, a framework for interareal frequency-specific communication has emerged. Our goals were to test the predictions of this framework in the context of the early visual pathways and to understand how attention modulates communication between the visual thalamus and primary visual cortex. We recorded LFPs simultaneously in retinotopically aligned regions of the visual thalamus and primary visual cortex in alert and behaving macaque monkeys trained on a contrast-change detection task requiring covert shifts in visual spatial attention. Coherence and Granger-causal interactions among early visual circuits varied dynamically over different trial periods. Attention significantly enhanced alpha-, beta-, and gamma-frequency interactions, often in a manner consistent with the known anatomy of early visual circuits. However, attentional modulation of communication among early visual circuits was not consistent with a simple static framework in which distinct frequency bands convey directed inputs. Instead, neuronal network interactions in early visual circuits were flexible and dynamic, perhaps reflecting task-related shifts in attention. NEW & NOTEWORTHY Attention alters the way we perceive the visual world. For example, attention can modulate how visual information is communicated between the thalamus and cortex. We recorded local field potentials simultaneously in the visual thalamus and cortex to quantify the impact of attention on visual information communication. We found that attentional modulation of visual information communication was not static, but dynamic over the time course of trials.


2014 ◽  
Vol 57 ◽  
pp. 63-72 ◽  
Author(s):  
Zhaohui Li ◽  
Gaoxiang Ouyang ◽  
Li Yao ◽  
Xiaoli Li

2008 ◽  
Vol 99 (3) ◽  
pp. 1461-1476 ◽  
Author(s):  
Malte J. Rasch ◽  
Arthur Gretton ◽  
Yusuke Murayama ◽  
Wolfgang Maass ◽  
Nikos K. Logothetis

We investigated whether it is possible to infer spike trains solely on the basis of the underlying local field potentials (LFPs). Using support vector machines and linear regression models, we found that in the primary visual cortex (V1) of monkeys, spikes can indeed be inferred from LFPs, at least with moderate success. Although there is a considerable degree of variation across electrodes, the low-frequency structure in spike trains (in the 100-ms range) can be inferred with reasonable accuracy, whereas exact spike positions are not reliably predicted. Two kinds of features of the LFP are exploited for prediction: the frequency power of bands in the high γ-range (40–90 Hz) and information contained in low-frequency oscillations (<10 Hz), where both phase and power modulations are informative. Information analysis revealed that both features code (mainly) independent aspects of the spike-to-LFP relationship, with the low-frequency LFP phase coding for temporally clustered spiking activity. Although both features and prediction quality are similar during seminatural movie stimuli and spontaneous activity, prediction performance during spontaneous activity degrades much more slowly with increasing electrode distance. The general trend of data obtained with anesthetized animals is qualitatively mirrored in that of a more limited data set recorded in V1 of non-anesthetized monkeys. In contrast to the cortical field potentials, thalamic LFPs (e.g., LFPs derived from recordings in the dorsal lateral geniculate nucleus) hold no useful information for predicting spiking activity.


Sign in / Sign up

Export Citation Format

Share Document