scholarly journals Canonical correlations reveal co-variability between spike trains and local field potentials in area MT)

2015 ◽  
Vol 16 (Suppl 1) ◽  
pp. P194
Author(s):  
Jacob Yates ◽  
Evan Archer ◽  
Alexander C Huk ◽  
Il Memming Park
2014 ◽  
Vol 57 ◽  
pp. 63-72 ◽  
Author(s):  
Zhaohui Li ◽  
Gaoxiang Ouyang ◽  
Li Yao ◽  
Xiaoli Li

2008 ◽  
Vol 99 (3) ◽  
pp. 1461-1476 ◽  
Author(s):  
Malte J. Rasch ◽  
Arthur Gretton ◽  
Yusuke Murayama ◽  
Wolfgang Maass ◽  
Nikos K. Logothetis

We investigated whether it is possible to infer spike trains solely on the basis of the underlying local field potentials (LFPs). Using support vector machines and linear regression models, we found that in the primary visual cortex (V1) of monkeys, spikes can indeed be inferred from LFPs, at least with moderate success. Although there is a considerable degree of variation across electrodes, the low-frequency structure in spike trains (in the 100-ms range) can be inferred with reasonable accuracy, whereas exact spike positions are not reliably predicted. Two kinds of features of the LFP are exploited for prediction: the frequency power of bands in the high γ-range (40–90 Hz) and information contained in low-frequency oscillations (<10 Hz), where both phase and power modulations are informative. Information analysis revealed that both features code (mainly) independent aspects of the spike-to-LFP relationship, with the low-frequency LFP phase coding for temporally clustered spiking activity. Although both features and prediction quality are similar during seminatural movie stimuli and spontaneous activity, prediction performance during spontaneous activity degrades much more slowly with increasing electrode distance. The general trend of data obtained with anesthetized animals is qualitatively mirrored in that of a more limited data set recorded in V1 of non-anesthetized monkeys. In contrast to the cortical field potentials, thalamic LFPs (e.g., LFPs derived from recordings in the dorsal lateral geniculate nucleus) hold no useful information for predicting spiking activity.


2010 ◽  
Vol 103 (5) ◽  
pp. 2912-2930 ◽  
Author(s):  
Diego A. Gutnisky ◽  
Krešimir Josić

Experimental advances allowing for the simultaneous recording of activity at multiple sites have significantly increased our understanding of the spatiotemporal patterns in neural activity. The impact of such patterns on neural coding is a fundamental question in neuroscience. The simulation of spike trains with predetermined activity patterns is therefore an important ingredient in the study of potential neural codes. Such artificially generated spike trains could also be used to manipulate cortical neurons in vitro and in vivo. Here, we propose a method to generate spike trains with given mean firing rates and cross-correlations. To capture this statistical structure we generate a point process by thresholding a stochastic process that is continuous in space and discrete in time. This stochastic process is obtained by filtering Gaussian noise through a multivariate autoregressive (AR) model. The parameters of the AR model are obtained by a nonlinear transformation of the point-process correlations to the continuous-process correlations. The proposed method is very efficient and allows for the simulation of large neural populations. It can be optimized to the structure of spatiotemporal correlations and generalized to nonstationary processes and spatiotemporal patterns of local field potentials and spike trains.


Sign in / Sign up

Export Citation Format

Share Document