scholarly journals Applicability of White-Noise Techniques to Analyzing Motion Responses

2010 ◽  
Vol 103 (5) ◽  
pp. 2642-2651 ◽  
Author(s):  
Joshua P. van Kleef ◽  
Gert Stange ◽  
Michael R. Ibbotson

Motion processing in visual neurons is often understood in terms of how they integrate light stimuli in space and time. These integrative properties, known as the spatiotemporal receptive fields (STRFs), are sometimes obtained using white-noise techniques where a continuous random contrast sequence is delivered to each spatial location within the cell's field of view. In contrast, motion stimuli such as moving bars are usually presented intermittently. Here we compare the STRF prediction of a neuron's response to a moving bar with the measured response in second-order interneurons (L-neurons) of dragonfly ocelli (simple eyes). These low-latency neurons transmit sudden changes in intensity and motion information to mediate flight and gaze stabilization reflexes. A white-noise analysis is made of the responses of L-neurons to random bar stimuli delivered either every frame (densely) or intermittently (sparsely) with a temporal sequence matched to the bar motion stimulus. Linear STRFs estimated using the sparse stimulus were significantly better at predicting the responses to moving bars than the STRFs estimated using a traditional dense white-noise stimulus, even when second-order nonlinear terms were added. Our results strongly suggest that visual adaptation significantly modifies the linear STRF properties of L-neurons in dragonfly ocelli during dense white-noise stimulation. We discuss the ability to predict the responses of visual neurons to arbitrary stimuli based on white-noise analysis. We also discuss the likely functional advantages that adaptive receptive field structures provide for stabilizing attitude during hover and forward flight in dragonflies.

2003 ◽  
Vol 89 (4) ◽  
pp. 1815-1825 ◽  
Author(s):  
E. Rolland Gamble ◽  
Ralph A. DiCaprio

The proprioceptors that signal the position and movement of the first two joints of crustacean legs provide an excellent system for comparison of spiking and nonspiking (graded) information transfer and processing in a simple motor system. The position, velocity, and acceleration of the first two joints of the crab leg are monitored by both nonspiking and spiking proprioceptors. The nonspiking thoracic-coxal muscle receptor organ (TCMRO) spans the TC joint, while the coxo-basal (CB) joint is monitored by the spiking CB chordotonal organ (CBCTO) and by nonspiking afferents arising from levator and depressor elastic strands. The response characteristics and nonlinear models of the input-output relationship for CB chordotonal afferents were determined using white noise analysis (Wiener kernel) methods. The first- and second-order Wiener kernels for each of the four response classes of CB chordotonal afferents (position, position-velocity, velocity, and acceleration) were calculated and the gain function for each receptor determined by taking the Fourier transform of the first-order kernel. In all cases, there was a good correspondence between the response of an afferent to deterministic stimulation (trapezoidal movement) and the best-fitting linear transfer function calculated from the first-order kernel. All afferents also had a nonlinear response component and second-order Wiener kernels were calculated for afferents of each response type. Models of afferent responses based on the first- and second-order kernels were able to predict the response of the afferents with an average accuracy of 86%.


1986 ◽  
Vol 4 ◽  
pp. S141-S152
Author(s):  
Masanori Sakuranaga ◽  
Yu-Ichiro Ando ◽  
Ken-Ichi Naka

2009 ◽  
Author(s):  
R. Léandre ◽  
Piotr Kielanowski ◽  
S. Twareque Ali ◽  
Anatol Odzijewicz ◽  
Martin Schlichenmaier ◽  
...  

2012 ◽  
Vol 26 (29) ◽  
pp. 1230014 ◽  
Author(s):  
CHRISTOPHER C. BERNIDO ◽  
M. VICTORIA CARPIO-BERNIDO

The white noise calculus originated by T. Hida is presented as a powerful tool in investigating physical and social systems. Combined with Feynman's sum-over-all histories approach, we parameterize paths with memory of the past, and evaluate the corresponding probability density function. We discuss applications of this approach to problems in complex systems and biophysics. Examples in quantum mechanics with boundaries are also given where Markovian paths are considered.


Author(s):  
NOBUHIRO ASAI ◽  
IZUMI KUBO ◽  
HUI-HSIUNG KUO

In this paper we will develop a systematic method to answer the questions (Q1) (Q2) (Q3) (Q4) (stated in Sec. 1) with complete generality. As a result, we can solve the difficulties (D1) (D2) (discussed in Sec. 1) without uncertainty. For these purposes we will introduce certain classes of growth functions u and apply the Legendre transform to obtain a sequence which leads to the weight sequence {α(n)} first studied by Cochran et al.6 The notion of (nearly) equivalent functions, (nearly) equivalent sequences and dual Legendre functions will be defined in a very natural way. An application to the growth order of holomorphic functions on ℰc will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document