Dopamine D1-Receptors Modulate Lateral Inhibition Between Principal Cells of the Nucleus Accumbens

2005 ◽  
Vol 93 (3) ◽  
pp. 1816-1819 ◽  
Author(s):  
Stefano Taverna ◽  
Barbara Canciani ◽  
Cyriel M. A. Pennartz

One of the current hypotheses on dopamine in the physiology of motivation posits that this neurotransmitter regulates filtering and selection of inputs to the nucleus accumbens. The effects of dopamine (100 μM) and the D1-receptor agonist SKF 38393 (20–50 μM) on GABAergic synaptic transmission between pairs of principal cells of rat nucleus accumbens were studied by using simultaneous dual patch-clamp recordings in acutely prepared brain slices. Both compounds attenuated postsynaptic responses induced by presynaptic firing and this effect was reversed by the D1-receptor antagonist SCH 23390 (25 μM). This attenuating effect of dopamine D1-receptors may act to diminish competitive interactions between single projection neurons or ensembles in the nucleus accumbens.

2022 ◽  
Author(s):  
Bridget A Matikainen-Ankney ◽  
Alex A Legaria ◽  
Yvan M Vachez ◽  
Caitlin A Murphy ◽  
Yiyan A Pan ◽  
...  

Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. In addition to homeostatic feeding mechanisms, there is growing recognition of the involvement of food reward and motivation in the development of obesity. However, it remains unclear how brain circuits that control food reward and motivation are altered in obese animals. Here, we tested the hypothesis that signaling through pro-motivational circuits in the core of the nucleus accumbens (NAc) is enhanced in the obese state, leading to invigoration of food seeking. Using a novel behavioral assay that quantifies physical work during food seeking, we confirmed that obese mice work harder than lean mice to obtain food, consistent with an increase in the relative reinforcing value of food in the obese state. To explain this behavioral finding, we recorded neural activity in the NAc core with both in vivo electrophysiology and cell-type specific calcium fiber photometry. Here we observed greater activation of D1-receptor expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. With ex vivo slice physiology we identified both pre- and post-synaptic mechanisms that contribute to this enhancement in NAc D1SPN activity in obese mice. Finally, blocking synaptic transmission from D1SPNs decreased physical work during food seeking and attenuated high-fat diet-induced weight gain. These experiments demonstrate that obesity is associated with a selective increase in the activity of D1SPNs during food seeking, which enhances the vigor of food seeking. This work also establishes the necessity of D1SPNs in the development of diet-induced obesity, identifying a novel potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document