scholarly journals Motion-defined contour processing in the early visual cortex

2012 ◽  
Vol 108 (5) ◽  
pp. 1228-1243 ◽  
Author(s):  
Amol Gharat ◽  
Curtis L. Baker

From our daily experience, it is very clear that relative motion cues can contribute to correctly identifying object boundaries and perceiving depth. Motion-defined contours are not only generated by the motion of objects in a scene but also by the movement of an observer's head and body (motion parallax). However, the neural mechanism involved in detecting these contours is still unknown. To explore this mechanism, we extracellularly recorded visual responses of area 18 neurons in anesthetized and paralyzed cats. The goal of this study was to determine if motion-defined contours could be detected by neurons that have been previously shown to detect luminance-, texture-, and contrast-defined contours cue invariantly. Motion-defined contour stimuli were generated by modulating the velocity of high spatial frequency sinusoidal luminance gratings (carrier gratings) by a moving squarewave envelope. The carrier gratings were outside the luminance passband of a neuron, such that presence of the carrier alone within the receptive field did not elicit a response. Most neurons that responded to contrast-defined contours also responded to motion-defined contours. The orientation and direction selectivity of these neurons for motion-defined contours was similar to that of luminance gratings. A given neuron also exhibited similar selectivity for the spatial frequency of the carrier gratings of contrast- and motion-defined contours. These results suggest that different second-order contours are detected in a form-cue invariant manner, through a common neural mechanism in area 18.

1994 ◽  
Vol 72 (5) ◽  
pp. 2134-2150 ◽  
Author(s):  
Y. X. Zhou ◽  
C. L. Baker

1. Single cortical neurons are known to respond to visual stimuli containing Fourier components only in a narrow range of spatial frequencies. This investigation demonstrates that some neurons in cat area 17 and 18 can also respond to certain stimuli that have no Fourier components inside the cell's luminance spatial frequency passband. 2. To study such “non-Fourier” responses, we used envelope stimuli that consisted of a high-spatial-frequency sinusoidal luminance grating (carrier) whose contrast was modulated by a low-spatial frequency sine wave (envelope). There was no Fourier component at the apparent periodicity of the envelope spatial frequency. However, some cells responded to such a “phantom” component of the envelope modulation when it fell inside the cell's luminance spatial frequency passband while all the real Fourier components in the stimuli were outside. 3. We conducted extensive control experiments to eliminate the possibility of producing artifactual responses to the envelope stimuli due to any small residual nonlinearity of the z-linearized CRT screen. The control experiments included 1) testing of screen linearity to ensure that the effect from the residual screen nonlinearity was no larger than the sensitivity level of visual responses and 2) comparing the responses to envelope stimuli with the responses to the equivalent contrast of the artifact produced by the screen nonlinearity. All these control experiments indicated that any effect of screen nonlinearity did not contribute significantly to the neural envelope responses. 4. We performed a statistical analysis to obtain an index of relative strength of envelope responses for each cell and to objectively classify cells as “envelope-responsive” or “non-envelope-responsive.”(ABSTRACT TRUNCATED AT 250 WORDS)


2017 ◽  
Vol 37 (42) ◽  
pp. 10125-10138 ◽  
Author(s):  
Kirstie J. Salinas ◽  
Dario X. Figueroa Velez ◽  
Jack H. Zeitoun ◽  
Hyungtae Kim ◽  
Sunil P. Gandhi

1992 ◽  
Vol 9 (6) ◽  
pp. 581-593 ◽  
Author(s):  
C. Casanova ◽  
Y. Michaud ◽  
C. Morin ◽  
P.A. McKinley ◽  
S. Molotchnikoff

AbstractWe have investigated the effects of inactivation of localized sites in area 17 on the visual responses of cells in visuotopically corresponding regions of area 18. Experiments were performed on adult normal cats. The striate cortex was inactivated by the injection of nanoliters of lidocaine hydrochloride or of γ-aminobutyric acid (GABA) dissolved in a staining solution. Responses of the simple and complex cells of area 18 to optimally oriented light and dark bars moving in the two directions of motion were recorded before, during, and after the drug injection. Two main effects are described.First, for a substantial number of cells, the drug injection provoked an overall reduction of the cell's visual responses. This nonspecific effect largely predominated in the complex cell family (76% of the units affected). This effect is consistent with the presence of long-range excitatory connections in the visual cortex.Second, the inactivation of area 17 could affect specific receptive-field properties of cells in area 18. The main specific effect was a loss of direction selectivity of a number of cells in area 18, mainly in the simple family (more than 53% of the units affected). The change in direction selectivity comes either from a disinhibitory effect in the nonpreferred direction or from a reduction of response in the preferred direction. It is proposed that the disinhibitory effects were mediated by inhibitory interneurones within area 18. In a very few cases, the change of directional preference was associated with a modification of the cell's response profile.These results showed that the signals from area 17 are necessary to drive a number of units in area 18, and that area 17 can contribute to, or at least modulate, the receptive-field properties of a large number of cells in the parastriate area.


2016 ◽  
Vol 3 (1) ◽  
pp. 150523 ◽  
Author(s):  
Roger W. Li ◽  
Truyet T. Tran ◽  
Ashley P. Craven ◽  
Tsz-Wing Leung ◽  
Sandy W. Chat ◽  
...  

Neurons in the early visual cortex are finely tuned to different low-level visual features, forming a multi-channel system analysing the visual image formed on the retina in a parallel manner. However, little is known about the potential ‘cross-talk’ among these channels. Here, we systematically investigated whether stereoacuity, over a large range of target spatial frequencies, can be enhanced by perceptual learning. Using narrow-band visual stimuli, we found that practice with coarse (low spatial frequency) targets substantially improves performance, and that the improvement spreads from coarse to fine (high spatial frequency) three-dimensional perception, generalizing broadly across untrained spatial frequencies and orientations. Notably, we observed an asymmetric transfer of learning across the spatial frequency spectrum. The bandwidth of transfer was broader when training was at a high spatial frequency than at a low spatial frequency. Stereoacuity training is most beneficial when trained with fine targets. This broad transfer of stereoacuity learning contrasts with the highly specific learning reported for other basic visual functions. We also revealed strategies to boost learning outcomes ‘beyond-the-plateau’. Our investigations contribute to understanding the functional properties of the network subserving stereovision. The ability to generalize may provide a key principle for restoring impaired binocular vision in clinical situations.


1989 ◽  
Vol 2 (1) ◽  
pp. 15-18 ◽  
Author(s):  
Paul J. DeMarco ◽  
Jonathan D. Nussdorf ◽  
Douglas A. Brockman ◽  
Maureen K. Powers

AbstractVisual responses of goldfish to rotating square-wave gratings were recorded before and after intraocular injection of 2-amino-4-phosphonobutyric acid (APB). High doses of APB reduced the rate of optokinetic nystagmus (OKN) to a relatively high spatial frequency grating moving at a high temporal frequency. Responses to a low spatial frequency grating were not altered, nor were responses to the higher spatial frequency when it rotated slowly. The effects of APB were transient and lasted no longer than 3 d. We conclude that APB reduces OKN to high spatiotemporal frequencies in goldfish.


Author(s):  
Alice Mado Proverbio ◽  
and Alberto Zani

A hemispheric asymmetry is known for the processing of global vs. local visual information. In this study, we investigated the existence of a hemispheric asymmetry for visual processing of low vs. high spatial frequency gratings. Event-related potentials were recorded in a group of healthy right-handed volunteers from 30 scalp sites. Six types of stimuli (1.5, 3 and 6 c/deg gratings) were randomly flashed 180 times in the left and right upper hemi-fields. Stimulus duration was 80 ms and ISI ranged between 850-1000 ms. Participants had to pay attention and respond to targets based on their spatial frequency and location, or to passively look at the stimuli. C1 and P1 visual responses, as well as a later Selection negativity and a P300 components of ERPs were quantified and subjected to repeated-measure ANOVAs. Overall, performance was faster for the RVF, thus suggesting a left hemispheric advantage for attentional selection of local elements. Similarly, the analysis of mean area amplitude of C1 (60-110 ms) sensory response showed a stronger attentional effect (F+L+ vs. F-L+) at left occipital areas, thus suggesting the sensory nature of this hemispheric asymmetry.


2021 ◽  
Author(s):  
Kirsten Petras ◽  
Sanne Ten Oever ◽  
Sarang S. Dalal ◽  
Valerie Goffaux

Visual images contain redundant information across spatial scales where low spatial frequency contrast is informative towards the location and likely content of high spatial frequency detail. Previous research suggests that the visual system makes use of those redundancies to facilitate efficient processing. In this framework, a fast, initial analysis of low-spatial frequency (LSF) information guides the slower and later processing of high spatial frequency (HSF) detail. Here, we used multivariate classification as well as time-frequency analysis of MEG responses to the viewing of intact and phase scrambled images of human faces to demonstrate that the availability of redundant LSF information, as found in broadband intact images, correlates with a reduction in HSF representational dominance in both early and higher-level visual areas as well as a reduction of gamma-band power in early visual cortex. Our results indicate that the cross spatial frequency information redundancy that can be found in all natural images might be a driving factor in the efficient integration of fine image details.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 180
Author(s):  
Alice Mado Proverbio ◽  
Alberto Zani

A hemispheric asymmetry for the processing of global versus local visual information is known. In this study, we investigated the existence of a hemispheric asymmetry for the visual processing of low versus high spatial frequency gratings. The event-related potentials were recorded in a group of healthy right-handed volunteers from 30 scalp sites. Six types of stimuli (1.5, 3 and 6 c/deg gratings) were randomly flashed 180 times in the left and right upper hemifields. The stimulus duration was 80 ms, and the interstimulus interval (ISI) ranged between 850 and 1000 ms. Participants paid attention and responded to targets based on their spatial frequency and location. The C1 and P1 visual responses, as well as a later selection negativity and a P300 component of event-related potentials (ERPs), were quantified and subjected to repeated-measure analyses of variance (ANOVAs). Overall, the performance was faster for the right visual field (RVF), thus suggesting a left hemispheric advantage for the attentional selection of local elements. Similarly, the analysis of the mean area amplitude of the C1 (60–110 ms) sensory response showed a stronger attentional effect (F+L+ vs. F−L+) at the left occipital areas, thus suggesting the sensory nature of this hemispheric asymmetry.


Sign in / Sign up

Export Citation Format

Share Document