scholarly journals Multiparametric Auditory Receptive Field Organization Across Five Cortical Fields in the Albino Rat

2007 ◽  
Vol 97 (5) ◽  
pp. 3621-3638 ◽  
Author(s):  
Daniel B. Polley ◽  
Heather L. Read ◽  
Douglas A. Storace ◽  
Michael M. Merzenich

The auditory cortex of the rat is becoming an increasingly popular model system for studies of experience-dependent receptive field plasticity. However, the relative position of various fields within the auditory core and the receptive field organization within each field have yet to be fully described in the normative case. In this study, the macro- and micro-organizational features of the auditory cortex were studied in pentobarbital-anesthetized adult rats with a combination of physiological and anatomical methods. Dense microelectrode mapping procedures were used to identify the relative position of five tonotopically organized fields within the auditory core: primary auditory cortex (AI), the posterior auditory field (PAF), the anterior auditory field (AAF), the ventral auditory field (VAF), and the suprarhinal auditory field (SRAF). AI and AAF both featured short-latency, sharply tuned responses with predominantly monotonic intensity-response functions. SRAF and PAF were both characterized by longer-latency, broadly tuned responses. VAF directly abutted the ventral boundary of AI but was almost exclusively composed of low-threshold nonmonotonic intensity-tuned responses. Dual injection of retrograde tracers into AI and VAF was used to demonstrate that the sources of thalamic input from the medial geniculate body to each area were essentially nonoverlapping. An analysis of receptive field parameters beyond characteristic frequency revealed independent spatially ordered representations for features related to spectral tuning, intensity tuning, and onset response properties in AI, AAF, VAF, and SRAF. These data demonstrate that despite its greatly reduced physical scale, the rat auditory cortex features a surprising degree of organizational complexity and detail.

1999 ◽  
Vol 16 (4) ◽  
pp. 653-665 ◽  
Author(s):  
DAIYAN XIN ◽  
STEWART A. BLOOMFIELD

We studied the light-evoked responses of AII amacrine cells in the rabbit retina under dark- and light-adapted conditions. In contrast to the results of previous studies, we found that AII cells display robust responses to light over a 6–7 log unit intensity range, well beyond the operating range of rod photoreceptors. Under dark adaptation, AII cells showed an ON-center/OFF-surround receptive-field organization. The intensity–response profile of the center-mediated response component followed a dual-limbed sigmoidal function indicating a transition from rod to cone mediation as stimulus intensities were increased. Following light adaptation, the receptive-field organization of AII cells changed dramatically. Light-adapted AII cells showed both ON- and OFF-responses to stimulation of the center receptive field, but we found no evidence for an antagonistic surround. Interestingly, the OFF-center response appeared first following rapid light adaptation and was then replaced gradually over a 1–4 min period by the emerging ON-center response component. Application of the metabotropic glutamate receptor agonist APB, the ionotropic glutamate blocker CNQX, 8-bromo-cGMP, and the nitric oxide donor SNAP all showed differential effects on the various center-mediated responses displayed by dark- and light-adapted AII cells. Taken together, these pharmacological results indicated that different synaptic circuits are responsible for the generation of the different AII cell responses. Specifically, the rod-driven ON-center responses are apparently derived from rod bipolar cell synaptic inputs, whereas the cone-driven ON-center responses arise from signals crossing the gap junctions between AII cells and ON-center cone bipolar cells. Additionally, the OFF-center response of light-adapted AII cells reflects direct synaptic inputs from OFF-center cone bipolar cells to AII dendritic processes in the distal inner plexiform layer.


2013 ◽  
Vol 110 (8) ◽  
pp. 1892-1902 ◽  
Author(s):  
Ben D. Richardson ◽  
Kenneth E. Hancock ◽  
Donald M. Caspary

Novel stimulus detection by single neurons in the auditory system, known as stimulus-specific adaptation (SSA), appears to function as a real-time filtering/gating mechanism in processing acoustic information. Particular stimulus paradigms allowing for quantification of a neuron's ability to detect novel or deviant stimuli have been used to examine SSA in the inferior colliculus, medial geniculate body (MGB), and auditory cortex of anesthetized rodents. However, the study of SSA in awake animals is limited to auditory cortex. The present study used individually advanceable tetrodes to record single-unit responses from auditory thalamus (MGB) of awake young adult and aged Fischer Brown Norway (FBN) rats to 1) examine the presence of SSA in the MGB of awake rats and 2) determine whether SSA is altered by aging in MGB. MGB single units in awake FBN rats displayed SSA in response to two stimulus paradigms: the oddball paradigm and a random blocked/interleaved presentation of a set of frequencies. SSA levels were modestly, but nonsignificantly, increased in the nonlemniscal regions of the MGB and at lower stimulus intensities, where 27 of 57 (47%) young adult MGB units displayed SSA. The present findings provide the initial description of SSA in the MGB of awake rats and support SSA as being qualitatively independent of arousal level or anesthetized state. Finally, contrary to previous studies in auditory cortex of anesthetized rats, MGB units in aged rats showed SSA levels indistinguishable from SSA levels in young adult rats, suggesting that SSA in MGB was not impacted by aging in an awake preparation.


1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


Author(s):  
James M. Fox ◽  
David C. Van Essen ◽  
Tobias Delbrück ◽  
Jack Gallant ◽  
Charles H. Anderson

1995 ◽  
Vol 73 (4) ◽  
pp. 1721-1723 ◽  
Author(s):  
D. F. Bossut ◽  
E. R. Perl

1. The effects of sympathetic stimulation and close arterial injection of norepinephrine were tested on cutaneous myelinated-fiber (A delta) mechanical nociceptors [high-threshold mechanoreceptors-(MyHTMs)] from normal and from partially transsected nerves. 2. Neither sympathetic stimulation nor close arterial injection of norepinephrine (200 ng) excited MyHTMs (18) recorded from the uninjured great auricular nerve of adult rabbits. 3. MyHTMs (58) conducting across the site of partial cut lesions, made 2 to 28 days previously, had threshold and responsiveness to mechanical stimuli, receptive field organization, and absence of background discharge typical of such elements in normal nerve. 4. Four MyHTMs recorded from the injured nerves were excited by sympathetic stimulation and/or norepinephrine injection but only one gave more than two impulses within 60 s to either form of stimulation. 5. The meagerness of the sympathetic and adrenergic excitation of MyHTMs after nerve injury contrasts with that observed under similar conditions for C-fiber polymodal nociceptors. Therefore, induction of adrenergic responsiveness in nociceptors after partial denervation in cutaneous MyHTMs appears to be less important for mechanisms related to pathogenic pain than alterations in certain C-fiber nociceptors.


2010 ◽  
Vol 103 (2) ◽  
pp. 779-792 ◽  
Author(s):  
Stephen M. Rogers ◽  
George W. J. Harston ◽  
Fleur Kilburn-Toppin ◽  
Thomas Matheson ◽  
Malcolm Burrows ◽  
...  

Desert locusts ( Schistocerca gregaria ) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120° × 60° in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes.


Sign in / Sign up

Export Citation Format

Share Document