Response properties of area 17 neurons in cats reared in stroboscopic illumination

1987 ◽  
Vol 57 (5) ◽  
pp. 1511-1535 ◽  
Author(s):  
J. Cremieux ◽  
G. A. Orban ◽  
J. Duysens ◽  
B. Amblard

The response properties of 196 area 17 cells were studied qualitatively in seven cats reared from birth in a stroboscopically illuminated environment (frequency, 2/s; duration, 200 microseconds). Quantitative testing with the multihistogram technique was carried out in 115 cells. As control population, 453 neurons recorded in area 17 of the normal adult cat and tested qualitatively (of which 301 neurons were tested quantitatively) were available. In area 17 of strobe-reared cats, a number of spatial characteristics of receptive fields investigated with hand-held stimuli were found to be abnormal. There was a strong reduction in the encounter frequency both of end-stopped cells and of binocularly driven cells in the strobe-reared cats. Central receptive fields in strobe-reared cats were wider than in normal cats, but the increase in receptive-field width with eccentricity was still observed. More cells than in normal cats showed either no selectivity or only a weak bias for stimulus orientation, but the orientation tuning of orientation-selective cells was similar in strobe-reared and normal cats. Quantitative testing revealed that the velocity preference of cells in area 17 subserving central vision was different in strobe-reared cats from that of normal cats, due to a reduction in the encounter frequency of cells showing a preference for low velocities. There was no difference in velocity preference between strobe-reared and normal cats in the parts of area 17 that subserve peripheral vision, the proportion of neurons responding to fast velocities showing a similar increase in both groups of animals. Fewer cells were direction selective in strobe-reared cats than in normal cats. Most of the remaining direction-selective cells had peripheral receptive fields and the synergism between leaving an OFF subregion and entering an ON subregion contributed to their direction selectivity. Latency of neurons in area 17 of strobe-reared cats was slightly higher than in normal cats, but the response strength of neurons was the same in the two groups. The proportion of cells failing to respond to briefly flashed stationary stimuli was significantly lower in strobe-reared than in normal animals. Qualitative and quantitative testing showed that strobe rearing has a stronger effect on the parts of area 17 that subserve central vision than on those that subserve peripheral vision. Comparing the present results with those of Kennedy and Orban (37) shows that strobe rearing has less effect on area 17 than on area 18 and that the functional differences between areas 17 and 18 in strobe-reared cats are smaller than in normal cats.

1989 ◽  
Vol 3 (3) ◽  
pp. 249-265 ◽  
Author(s):  
Helen Sherk

AbstractThe existence of multiple areas of extrastriate visual cortex raises the question of how the response properties of each area are derived from its visual input. This question was investigated for one such area in the cat, referred to here as the Clare-Bishop area (Hubel & Wiesel, 1969); it is the region of lateral suprasylvian cortex that receives input from area 17. A novel approach was used, in which kainic acid was injected locally into the Clare-Bishop area, making it possible to record directly from afferent inputs.The response properties of the great majority of a sample of 424 presumed afferents resembled cells in areas 17 and 18. Thus, a systematic comparison was made with cells from area 17's upper layers, the source of its projection to the Clare-Bishop area (Gilbert & Kelly, 1975), to see whether these afferents had distinctive properties that might distinguish them from cells projecting to areas 18 or 19. Some differences did emerge: (1) The smallest receptive fields typical of area 17 were relatively scarce among afferents. (2) Direction-selective afferents were more abundant than were such cells in area 17. (3) End-stopped afferents were extremely rare, although end-stopped cells were common in area 17's upper layers.Despite these differences, afferents were far more similar in their properties to cells in areas 17 and 18 than to cells in the Clare-Bishop area. Compared to the latter, afferents showed major discrepancies in receptive-field size, in direction selectivity, in end-stopping, and in ocular dominance distribution. These differences seem most likely to stem from circuitry intrinsic to the Clare-Bishop area.


1993 ◽  
Vol 10 (1) ◽  
pp. 93-115 ◽  
Author(s):  
B. Dreher ◽  
A. Michalski ◽  
R. H. T. Ho ◽  
C. W. F. Lee ◽  
W. Burke

AbstractExtracellular recordings from single neurons have been made from presumed area 21a of the cerebral cortex of the cat, anesthetized with N2O/O2/sodium pentobarbitone mixture. Area 21a contains mainly a representation of a central horizontal strip of contralateral visual field about 5 deg above and below the horizontal meridian.Excitatory discharge fields of area 21a neurons were substantially (or slightly but significantly) larger than those of neurons at corresponding eccentricities in areas 17, 19, or 18, respectively. About 95% of area 21a neurons could be activated through either eye and the input from the ipsilateral eye was commonly dominant. Over 90% and less than 10% of neurons had, respectively, C-type and S-type receptive-field organization. Virtually all neurons were orientation-selective and the mean width at half-height of the orientation tuning curves at 52.9 deg was not significantly different from that of neurons in areas 17 and 18. About 30% of area 21a neurons had preferred orientations within 15 deg of the vertical.The mean direction-selectivity index (32.8%) of area 21a neurons was substantially lower than the indices for neurons in areas 17 or 18. Only a few neurons exhibited moderately strong end-zone inhibition. Area 21a neurons responded poorly to fast-moving stimuli and the mean preferred velocity at about 12.5 deg/s was not significantly different from that for area 17 neurons.Selective pressure block of Y fibers in contralateral optic nerve resulted in a small but significant reduction in the preferred velocities of neurons activated via the Y-blocked eye. By contrast, removal of the Y input did not produce significant changes in the spatial organization of receptive fields (S or C type), the size of the discharge fields, the width of orientation tuning curves, or direction-selectivity indices.Our results are consistent with the idea that area 21a receives its principal excitatory input from area 17 and is involved mainly in form rather than motion analysis.


1987 ◽  
Vol 58 (4) ◽  
pp. 676-699 ◽  
Author(s):  
N. E. Berman ◽  
M. E. Wilkes ◽  
B. R. Payne

1. The organization of subunits and sequences subserving preferred stimulus orientation and preferred direction of stimulus motion in cat cerebral cortical areas 17 and 18 was determined by making vertical, tangential, and oblique microelectrode penetrations into those areas. 2. Quantitative measurements of direction selectivity indicated that not all shades of direction selectivity are equally represented in area 17. Peaks in the distribution of direction indices may correspond to the bidirectional, direction biased, and direction selective categories used in qualitative studies. 3. The relationship between preferred direction and location in the visual field was examined for units with receptive fields centered more than 15 degrees from the area centralis. Simple cells had orientation preferences that tended to be parallel to radii extending out from the area centralis. Wide-field complex cells had orientation preferences that tended to be parallel to concentric circles centered on the area centralis; the direction preferences of this group were biased toward motion away from the area centralis. 4. Unit pairs separated by 200 microns or less were 4.2 times as likely to have the same preferred direction as to have opposite preferred directions, indicating that, on average, strings of five neurons have similar direction preferences. 5. Tracks in area 18 showed a similar pattern to those in area 17. 6. In the vertical tracks in area 17 a small proportion (12%) of the units recorded in infragranular layers had preferred orientations that deviated 30 degrees or more from the first unit recorded in the same column. The presence of these cells most likely reflects the relative crowding of columns in infragranular layers, which occurs at the crown of the lateral gyrus. Columns with such large jumps in preferred orientation were not observed in area 18, which occupies a relatively flat region of cortex. 7. In both areas 17 and 18 direction preference in vertical tracks usually reversed at least once, either between supra- and infragranular layers or within infragranular layers. Along these same tracks, orientation preference usually did not change. 8. In tangential tracks, preferred direction and orientation preferences changed together in small increments. Occasionally a large jump in preferred direction would occur with only a small change in preferred orientation. These large jumps were considered to mark the boundaries of the direction sequences. Most frequently these boundaries were separated by 400-600 microns. This value is approximately half the size of a complete set of orientation preferences (700-1,200 microns).(ABSTRACT TRUNCATED AT 400 WORDS)


1983 ◽  
Vol 49 (3) ◽  
pp. 686-704 ◽  
Author(s):  
H. Kennedy ◽  
G. A. Orban

1. The response properties of 182 units were studied in the primary visual cortices (155 in area 18 and 27 in area 17) in eight cats reared from birth in a stroboscopically illuminated environment (frequency, 2/s; duration, 200 microseconds). Multihistogram quantitative testing was carried out in 82 units (64 in area 18 and 18 in area 17). Two hundred three neurons recorded and quantitatively tested in areas 17 and 18 of the normal adult cat were used for comparison. 2. Spatial characteristics of receptive fields investigated using hand-held stimuli were found to be abnormal. The correlation between receptive-field width and eccentricity was lost in area 18 and consequently, receptive fields were significantly wider in area 18 subserving central vision. Cells could be classified according to the spatial characteristics of their receptive fields. There was a much smaller proportion of end-stopped cells in strobe-reared animals. Orientation tuning in the deprived animals was normal except for a small number of cells that showed no selectivity for stimulus orientation. 3. Compilation of velocity-response curves made it possible to classify areas 17 and 18 neurons into four categories: velocity low-pass, velocity broad-band, velocity tuned, and velocity high-pass cells. The proportion of velocity high-pass cells was reduced in area 18 subserving peripheral vision, as was the proportion of velocity-tuned cells in area 18 subserving central vision. 4. In the strobe-reared animal velocity sensitivity was somewhat different from that of the normal animal. Neurons in area 18 subserving the peripheral visual field failed to respond to fast velocities. Neurons in area 17 subserving the central visual field in strobe-reared animals responded to slightly higher velocities than in the normal animal. 5. In the deprived animals the number of neurons that were selective to the direction of motion was strongly reduced. The majority of neurons failed to show a selectivity for direction at all velocities. A number of neurons could be directional at some velocities but were unreliable, since they inverted their preferred direction with velocity changes. 6. Binocular convergence onto visual cortical cells was perturbed. In area 18 the majority of neurons were driven by the contralateral eye. In area 17 most neurons could be driven only by either the ipsilateral or contralateral eye. 7. Quantitative testing (of direction selectivity, sensitivity to high velocities, response latency, and strength) and qualitative testing (receptive-field width, end stopping, and ocular dominance) showed that the normal influence of eccentricity on functional properties was strongly reduced by strobe rearing.


1976 ◽  
Vol 39 (3) ◽  
pp. 613-630 ◽  
Author(s):  
W. Singer ◽  
F. Tretter

An attempt was made to relate the alterations of cortical receptive fields as they result from binocular visual deprivation to changes in afferent, intrinsic, and efferent connections of the striate and parastriate cortex. The experiments were performed in cats aged at least 1 jr with their eyelids sutured closed from birth.The results of the receptive-field analysis in A17 confirmed the reduction of light-responsive cells, the occasional incongruity of receptive-field properties in the two eyes, and to some extent also the loss of orientation and direction selectivity as reported previously. Other properties common to numerous deprived receptive fields were the lack of sharp inhibitory sidebands and the sometimes exceedingly large size of the receptive fields. Qualitatively as well as quantitatively, similar alterations were observed in area 18. A rather high percentage of cells in both areas had, however, preserved at least some orientation preference, and a few receptive fields had tuning properties comparable to those in normal cats. The ability of area 18 cells in normal cats to respond to much higher stimulus velocities than area 17 cells was not influenced by deprivation.The results obtained with electrical stimulation suggest two main deprivation effects: 1) A marked decrease in the safety factor of retinothalamic and thalamocortical transmission. 2) A clear decrease in efficiency of intracortical inhibition. But the electrical stimulation data also show that none of the basic principles of afferent, intrinsic, and efferent connectivity is lost or changed by deprivation. The conduction velocities in the subcortical afferents and the differentiation of the afferents to areas 17 and 18 into slow- and fast-conducting projection systems remain unaltered. Intrinsic excitatory connections remain functional; this is also true for the disynaptic inhibitory pathways activated preferentially by the fast-conducting thalamocortical projection. The laminar distribution of cells with monosynaptic versus polsynaptic excitatory connections is similar to that in normal cats. Neurons with corticofugal axons remain functionally connected and show the same connectivity pattern as those in normal cats. The nonspecific activation system from the mesencephalic reticular formation also remains functioning both at the thalamic and the cortical level.We conclude from these and several other observations that most, if not all, afferent, intrinsic, and efferent connections of areas 17 and 18 are specified from birth and depend only little on visual experience. This predetermined structural plan, however, allows for some freedom in the domain of orientation tuning, binocular correspondence, and retinotopy which is specified only when visual experience is possible.


1998 ◽  
Vol 15 (1) ◽  
pp. 177-196 ◽  
Author(s):  
J. MCLEAN ◽  
L.A. PALMER

We have utilized an associative conditioning paradigm to induce changes in the receptive field (RF) properties of neurons in the adult cat striate cortex. During conditioning, the presentation of particular visual stimuli were repeatedly paired with the iontophoretic application of either GABA or glutamate to control postsynaptic firing rates. Similar paradigms have been used in kitten visual cortex to alter RF properties (Fregnac et al., 1988, 1992; Greuel et al., 1988; Shulz & Fregnac, 1992). Roughly half of the cells that were subjected to conditioning with stimuli differing in orientation were found to have orientation tuning curves that were significantly altered. In general, the modification in orientation tuning was not accompanied by a shift in preferred orientation, but rather, responsiveness to stimuli at or near the positively reinforced orientation was increased relative to controls, and responsiveness to stimuli at or near the negatively reinforced orientation was decreased relative to controls. A similar proportion of cells that were subjected to conditioning with stimuli differing in spatial phase were found to have spatial-phase tuning curves that were significantly modified. Conditioning stimuli typically differed by 90 deg in spatial phase, but modifications in spatial-phase angle were generally 30–40 deg. An interesting phenomenon we encountered was that during conditioning, cells often developed a modulated response to counterphased grating stimuli presented at the null spatial phase. We present an example of a simple cell for which the shift in preferred spatial phase measured with counterphased grating stimuli was comparable to the shift in spatial phase computed from a one-dimensional Gabor fit of the space-time RF profile. One of ten cells tested had a significant change in direction selectivity following associative conditioning. The specific and predictable modifications of RF properties induced by our associative conditioning procedure demonstrate the ability of mature visual cortical neurons to alter their integrative properties. Our results lend further support to models of synaptic plasticity where temporal correlations between presynaptic and postsynaptic activity levels control the efficiency of transmission at existing synapses, and to the idea that the mature visual cortex is, in some sense, dynamically organized.


1998 ◽  
Vol 80 (6) ◽  
pp. 2991-3004 ◽  
Author(s):  
Allen L. Humphrey ◽  
Alan B. Saul

Humphrey, Allen L. and Alan B. Saul. Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. J. Neurophysiol. 80: 2991–3004, 1998. Direction selectivity in simple cells of cat area 17 is linked to spatiotemporal (S-T) receptive-field structure. S-T inseparable receptive fields display gradients of response timing across the receptive field that confer a preferred direction of motion. Receptive fields that are not direction selective lack gradients; they are S-T separable, displaying uniform timing across the field. Here we further examine this link using a developmental paradigm that disrupts direction selectivity. Cats were reared from birth to 8 mo of age in 8-Hz stroboscopic illumination. Direction selectivity in simple cells was then measured using gratings drifting at different temporal frequencies (0.25–16 Hz). S-T structure was assessed using stationary bars presented at different receptive-field positions, with bar luminance being modulated sinusoidally at different temporal frequencies. For each cell, plots of response phase versus bar position were fit by lines to characterize S-T inseparability at each temporal frequency. Strobe rearing produced a profound loss of direction selectivity at all temporal frequencies; only 10% of cells were selective compared with 80% in normal cats. The few remaining directional cells were selective over a narrower than normal range of temporal frequencies and exhibited weaker than normal direction selectivity. Importantly, the directional loss was accompanied by a virtual elimination of S-T inseparability. Nearly all cells were S-T separable, like nondirectional cells in normal cats. The loss was clearest in layer 4. Normally, inseparability is greatest there, and it correlates well ( r = 0.77) with direction selectivity; strobe rearing reduced inseparability and direction selectivity to very low values. The few remaining directional cells were inseparable. In layer 6 of normal cats, most direction-selective cells are only weakly inseparable, and there is no consistent relationship between the two measures. However, after strobe rearing, even the weak inseparability was eliminated along with direction selectivity. The correlated changes in S-T structure and direction selectivity were confirmed using conventional linear predictions of directional tuning based on responses to counterphasing bars and white noise stimuli. The developmental changes were permanent, being observed up to 12 yr after strobe rearing. The deficits were remarkably specific; strobe rearing did not affect spatial receptive-field structure, orientation selectivity, spatial or temporal frequency tuning, or general responsiveness to visual stimuli. These results provide further support for a critical role of S-T structure in determining direction selectivity in simple cells. Strobe rearing eliminates directional tuning by altering the timing of responses within the receptive field.


2003 ◽  
Vol 20 (1) ◽  
pp. 85-96 ◽  
Author(s):  
H.A. BROWN ◽  
J.D. ALLISON ◽  
J.M. SAMONDS ◽  
A.B. BONDS

A stimulus located outside the classic receptive field (CRF) of a striate cortical neuron can markedly influence its behavior. To study this phenomenon, we recorded from two cortical sites, recorded and peripheral, with separate electrodes in cats anesthetized with Propofol and nitrous oxide. The receptive fields of each site were discrete (2–7.3 deg between centers). A control orientation tuning (OT) curve was measured for a single recorded cell with a drifting grating. The OT curve was then remeasured while stimulating simultaneously the cell's CRF as well as the peripheral site with a stimulus optimized for that location. For 22/60 cells, the peripheral stimulus suppressed the peak response and/or shifted the center of mass of the OT curve. For 19 of these 22 cells, we then reversibly blocked stimulus-driven activity at the peripheral site by iontophoretic application of GABA (0.5 M). For 6/19 cells, the response returned to control levels, implying that for these cells the inhibitory influence arose from the blocked site. The responses of nine cells remained reduced during inactivation of the peripheral site, suggesting that influence was generated outside the region of local block in area 17. This is consistent with earlier findings suggesting that modulatory influences can originate from higher cortical areas. Three cells had mixed results, suggesting multiple origins of influence. The response of each cell returned to suppressed levels after dissipation of the GABA and returned to baseline values when the peripheral stimulus was removed. These findings support a cortical model in which a cell's response is modulated by an inhibitory network originating from beyond the receptive field that supplants convergence of excitatory lateral geniculate neurons.


1997 ◽  
Vol 14 (1) ◽  
pp. 141-158 ◽  
Author(s):  
John M. Crook ◽  
Zoltan F. Kisvárday ◽  
Ulf T. Eysel

AbstractMicroiontophoresis of γ-aminobutyric acid (GABA) was used to reversibly inactivate small sites of defined orientation/direction specificity in layers II-IV of cat area 17 while single cells were recorded in the same area at a horizontal distance of ~350–700 jam. We compared the effect of inactivating iso-orientation sites (where orientation preference was within 22.5 deg) and cross-orientation sites (where it differed by 45–90 deg) on orientation tuning and directionality. The influence of iso-orientation inactivation was tested in 33 cells, seven of which were subjected to alternate inactivation of two iso-orientation sites with opposite direction preference. Of the resulting 40 inactivations, only two (5%) caused significant changes in orientation tuning, whereas 26 (65%) elicited effects on directionality: namely, an increase or a decrease in response to a cell's preferred direction when its direction preference was the same as that at an inactivation site, and an increase in response to a cell's nonpreferred direction when its direction preference was opposite that at an inactivation site. It is argued that the decreases in response to the preferred direction reflected a reduction in the strength of intracortical iso-orientation excitatory connections, while the increases in response were due to the loss of iso-orientation inhibition. Of 35 cells subjected to cross-orientation inactivation, only six (17%) showed an effect on directionality, whereas 21 (60%) showed significant broadening of orientation tuning, with an increase in mean tuning width at half-height of 126%. The effects on orientation tuning were due to increases in response to nonoptimal orientations. Changes in directionality also resulted from increased responses (to preferred or nonpreferred directions) and were always accompanied by broadening of tuning. Thus, the effects of cross-orientation inactivation were presumably due to the loss of a cross-orientation inhibitory input that contributes mainly to orientation tuning by suppressing responses to nonoptimal orientations. Differential effects of iso-orientation and cross-orientation inactivation could be elicited in the same cell or in different cells from the same inactivation site. The results suggest the involvement of three different intracortical processes in the generation of orientation tuning and direction selectivity in area 17: (1) suppression of responses to nonoptimal orientations and directions as a result of cross-orientation inhibition and iso-orientation inhibition between cells with opposite direction preferences; (2) amplification of responses to optimal stimuli via iso-orientation excitatory connections; and (3) regulation of cortical amplification via iso-orientation inhibition.


1994 ◽  
Vol 11 (5) ◽  
pp. 839-849 ◽  
Author(s):  
A. Michalski ◽  
B. M. Wimborne ◽  
G. H. Henry

AbstractNeuronal responses in cat visual area 21a were analyzed when the primary visual cortex (areas 17 and 18) was deactivated by cooling. Ipsilateral and contralateral cortices were deactivated separately. Results established that (1) cooling the ipsilateral primary cortex diminished the activity of all area 21a cells and, in 30%, blocked responsiveness altogether, and (2) cooling the contralateral primary cortex initially increased activity in area 21a cells but, with further cooling, reduced it to below the original level although only 9% of cells ceased responding. These findings were then compared to earlier results in which bilateral deactivation of the primary cortex greatly reduced and, in most cases, blocked the activity of area 21a cells (Michalski et al., 1993). Despite the response attenuation following cooling of the primary visual cortex (either ipsilateral or contralateral), neurons of area 21a retained their original orientation specificity and sharpness of tuning (measured as the half-width at half-height of the orientation tuning curve). Direction selectivity also tended to remain unchanged. We concluded that for area 21a cells (1) the ipsilateral primary cortex provides the main excitatory input; (2) the contralateral primary cortex supplies a large inhibitory input; and (3) the nature of orientation specificity, sharpness of orientation tuning, and direction selectivity are largely unaffected by removal of the ipsilateral hemisphere excitatory input or the contralateral hemisphere inhibitory input.


Sign in / Sign up

Export Citation Format

Share Document