Visual response properties of cortical inputs to an extrastriate cortical area in the cat

1989 ◽  
Vol 3 (3) ◽  
pp. 249-265 ◽  
Author(s):  
Helen Sherk

AbstractThe existence of multiple areas of extrastriate visual cortex raises the question of how the response properties of each area are derived from its visual input. This question was investigated for one such area in the cat, referred to here as the Clare-Bishop area (Hubel & Wiesel, 1969); it is the region of lateral suprasylvian cortex that receives input from area 17. A novel approach was used, in which kainic acid was injected locally into the Clare-Bishop area, making it possible to record directly from afferent inputs.The response properties of the great majority of a sample of 424 presumed afferents resembled cells in areas 17 and 18. Thus, a systematic comparison was made with cells from area 17's upper layers, the source of its projection to the Clare-Bishop area (Gilbert & Kelly, 1975), to see whether these afferents had distinctive properties that might distinguish them from cells projecting to areas 18 or 19. Some differences did emerge: (1) The smallest receptive fields typical of area 17 were relatively scarce among afferents. (2) Direction-selective afferents were more abundant than were such cells in area 17. (3) End-stopped afferents were extremely rare, although end-stopped cells were common in area 17's upper layers.Despite these differences, afferents were far more similar in their properties to cells in areas 17 and 18 than to cells in the Clare-Bishop area. Compared to the latter, afferents showed major discrepancies in receptive-field size, in direction selectivity, in end-stopping, and in ocular dominance distribution. These differences seem most likely to stem from circuitry intrinsic to the Clare-Bishop area.

1997 ◽  
Vol 78 (5) ◽  
pp. 2732-2741 ◽  
Author(s):  
M. T. Wallace ◽  
J. G. McHaffie ◽  
B. E. Stein

Wallace M. T., J. G. McHaffie, and B. E. Stein. Visual response properties and visuotopic representation in the newborn monkey superior colliculus. J. Neurophysiol. 78: 2732–2741, 1997. Visually responsive neurons were recorded in the superior colliculus (SC) of the newborn rhesus monkey. The receptive fields of these neurons were larger than those in the adult, but already were organized into a well-ordered map of visual space that was very much like that seen in mature animals. This included a marked expansion of the representation of the central 10° of the visual field and a systematic foveal to peripheral increase in receptive field size. Although newborn SC neurons had longer response latencies than did their adult counterparts, they responded vigorously to visual stimuli and exhibited many visual response properties that are characteristic of the adult. These included surround inhibition, within-field spatial summation, within-field spatial inhibition, binocularity, and an adult-like ocular dominance distribution. As in the adult, SC neurons in the newborn preferred a moving visual stimulus and had adult-like selectivities for stimulus speed. The developmentally advanced state of the functional circuitry of the newborn monkey SC contrasts with the comparative immaturity of neurons in its visual cortex. It also contrasts with observations on the state of maturation of the newborn SC in other developmental models (e.g., cat). The observation that extensive visual experience is not necessary for the development of many adult-like SC response properties in the monkey SC may help explain the substantial visual capabilities shown by primates soon after birth.


1987 ◽  
Vol 57 (5) ◽  
pp. 1511-1535 ◽  
Author(s):  
J. Cremieux ◽  
G. A. Orban ◽  
J. Duysens ◽  
B. Amblard

The response properties of 196 area 17 cells were studied qualitatively in seven cats reared from birth in a stroboscopically illuminated environment (frequency, 2/s; duration, 200 microseconds). Quantitative testing with the multihistogram technique was carried out in 115 cells. As control population, 453 neurons recorded in area 17 of the normal adult cat and tested qualitatively (of which 301 neurons were tested quantitatively) were available. In area 17 of strobe-reared cats, a number of spatial characteristics of receptive fields investigated with hand-held stimuli were found to be abnormal. There was a strong reduction in the encounter frequency both of end-stopped cells and of binocularly driven cells in the strobe-reared cats. Central receptive fields in strobe-reared cats were wider than in normal cats, but the increase in receptive-field width with eccentricity was still observed. More cells than in normal cats showed either no selectivity or only a weak bias for stimulus orientation, but the orientation tuning of orientation-selective cells was similar in strobe-reared and normal cats. Quantitative testing revealed that the velocity preference of cells in area 17 subserving central vision was different in strobe-reared cats from that of normal cats, due to a reduction in the encounter frequency of cells showing a preference for low velocities. There was no difference in velocity preference between strobe-reared and normal cats in the parts of area 17 that subserve peripheral vision, the proportion of neurons responding to fast velocities showing a similar increase in both groups of animals. Fewer cells were direction selective in strobe-reared cats than in normal cats. Most of the remaining direction-selective cells had peripheral receptive fields and the synergism between leaving an OFF subregion and entering an ON subregion contributed to their direction selectivity. Latency of neurons in area 17 of strobe-reared cats was slightly higher than in normal cats, but the response strength of neurons was the same in the two groups. The proportion of cells failing to respond to briefly flashed stationary stimuli was significantly lower in strobe-reared than in normal animals. Qualitative and quantitative testing showed that strobe rearing has a stronger effect on the parts of area 17 that subserve central vision than on those that subserve peripheral vision. Comparing the present results with those of Kennedy and Orban (37) shows that strobe rearing has less effect on area 17 than on area 18 and that the functional differences between areas 17 and 18 in strobe-reared cats are smaller than in normal cats.


1981 ◽  
Vol 45 (3) ◽  
pp. 397-416 ◽  
Author(s):  
J. F. Baker ◽  
S. E. Petersen ◽  
W. T. Newsome ◽  
J. M. Allman

1. The response properties of 354 single neurons in the medial (M), dorsomedial (DM), dorsolateral (DL), and middle temporal (MT) visual areas were studied quantitatively with bar, spot, and random-dot stimuli in chronically implanted owl monkeys with fixed gaze. 2. A directionality index was computed to compare the responses to stimuli in the optimal direction with the responses to the opposing direction of movement. The greater the difference between opposing directions, the higher the index. MT cells had much higher direction indices to moving bars than cells in DL, DM, and M. 3. A tuning index was computed for each cell to compare the responses to bars moving in the optimal direction, or flashed in the optimal orientation, with the responses in other directions or orientations within +/- 90 degrees. Cells in all four areas were more sharply tuned to the orientation of stationary flashed bars than to moving bars, although a few cells (9/92( were unresponsive in the absence of movement. DM cells tended to be more sharply tuned to moving bars than cells in the other areas. 4. Directionality in DM, DL, and MT was relatively unaffected by the use of single-spot stimuli instead of bars; tuning in all four areas was broader to spots than bars. 5. Moving arrays of randomly spaced spots were more strongly excitatory than bar stimuli for many neurons in MT (16/31 cells). These random-dot stimuli were also effective in M, but evoked no response or weak responses from most cells in DM and DL. 6. The best velocities of movement were usually in the range of 10-100 degrees/s, although a few cells (22/227), primarily in MT (14/69 cells), preferred higher velocities. 7. Receptive fields of neurons in all four areas were much larger than striate receptive fields. Eccentricity was positively correlated with receptive-field size (r = 0.62), but was not correlated with directionality index, tuning index, or best velocity. 8. The results support the hypothesis that there are specializations of function among the cortical visual areas.


1987 ◽  
Vol 58 (4) ◽  
pp. 676-699 ◽  
Author(s):  
N. E. Berman ◽  
M. E. Wilkes ◽  
B. R. Payne

1. The organization of subunits and sequences subserving preferred stimulus orientation and preferred direction of stimulus motion in cat cerebral cortical areas 17 and 18 was determined by making vertical, tangential, and oblique microelectrode penetrations into those areas. 2. Quantitative measurements of direction selectivity indicated that not all shades of direction selectivity are equally represented in area 17. Peaks in the distribution of direction indices may correspond to the bidirectional, direction biased, and direction selective categories used in qualitative studies. 3. The relationship between preferred direction and location in the visual field was examined for units with receptive fields centered more than 15 degrees from the area centralis. Simple cells had orientation preferences that tended to be parallel to radii extending out from the area centralis. Wide-field complex cells had orientation preferences that tended to be parallel to concentric circles centered on the area centralis; the direction preferences of this group were biased toward motion away from the area centralis. 4. Unit pairs separated by 200 microns or less were 4.2 times as likely to have the same preferred direction as to have opposite preferred directions, indicating that, on average, strings of five neurons have similar direction preferences. 5. Tracks in area 18 showed a similar pattern to those in area 17. 6. In the vertical tracks in area 17 a small proportion (12%) of the units recorded in infragranular layers had preferred orientations that deviated 30 degrees or more from the first unit recorded in the same column. The presence of these cells most likely reflects the relative crowding of columns in infragranular layers, which occurs at the crown of the lateral gyrus. Columns with such large jumps in preferred orientation were not observed in area 18, which occupies a relatively flat region of cortex. 7. In both areas 17 and 18 direction preference in vertical tracks usually reversed at least once, either between supra- and infragranular layers or within infragranular layers. Along these same tracks, orientation preference usually did not change. 8. In tangential tracks, preferred direction and orientation preferences changed together in small increments. Occasionally a large jump in preferred direction would occur with only a small change in preferred orientation. These large jumps were considered to mark the boundaries of the direction sequences. Most frequently these boundaries were separated by 400-600 microns. This value is approximately half the size of a complete set of orientation preferences (700-1,200 microns).(ABSTRACT TRUNCATED AT 400 WORDS)


2013 ◽  
Vol 110 (6) ◽  
pp. 1333-1345 ◽  
Author(s):  
Iain Stitt ◽  
Edgar Galindo-Leon ◽  
Florian Pieper ◽  
Gerhard Engler ◽  
Andreas K. Engel

In the superior colliculus (SC), visual afferent inputs from various sources converge in a highly organized way such that all layers form topographically aligned representations of contralateral external space. Despite this anatomical organization, it remains unclear how the layer-specific termination of different visual input pathways is reflected in the nature of visual response properties and their distribution across layers. To uncover the physiological correlates underlying the laminar organization of the SC, we recorded multiunit and local field potential activity simultaneously from all layers with dual-shank multichannel linear probes. We found that the location of spatial receptive fields was strongly conserved across all visual responsive layers. There was a tendency for receptive field size to increase with depth in the SC, with superficial receptive fields significantly smaller than deep receptive fields. Additionally, superficial layers responded significantly faster than deeper layers to flash stimulation. In some recordings, flash-evoked responses were characterized by the presence of gamma oscillatory activity (40–60 Hz) in multiunit and field potential signals, which was strongest in retinorecipient layers. While SC neurons tended to respond only weakly to full-field drifting gratings, we observed very similar oscillatory responses to the offset of grating stimuli, suggesting gamma oscillations are produced following light offset. Oscillatory spiking activity was highly correlated between horizontally distributed neurons within these layers, with oscillations temporally locked to the stimulus. Together, visual response properties provide physiological evidence reflecting the laminar-specific termination of visual afferent pathways in the SC, most notably characterized by the oscillatory entrainment of superficial neurons.


1979 ◽  
Vol 42 (6) ◽  
pp. 1640-1655 ◽  
Author(s):  
H. Sherk

1. The visual-response properties of single cells in the cat's superior colliculus and parabigeminal nucleus were compared. In the colliculus, 151 cells (restricted to the upper layer) were studied, and in the parabigeminal nucleus, 134 cells. 2. Response characteristics in the two structures were similar in many respects: among these were receptive-field size, ocular dominance, and lack of specificity for stimulus shape and contrast (light versus dark). 3. Quantitatively, there were some significant differences between the two populations of cells. Parabigeminal neurons tended to respond more brisky and reliably, while being less selective for those stimulus parameters tested (size, velocity, and direction of movement). Spontaneous activity was much higher in the parabigeminal nucleus than in the colliculus. Finally, parabigeminal cell responses to stationary stimuli were somewhat brisker than those of tectal cells. 4. These data suggest that a physiologically distinct population of tectal cells sends input to the parabigeminal nucleus, probably with some convergence on individual cells.


1983 ◽  
Vol 49 (3) ◽  
pp. 674-685 ◽  
Author(s):  
L. Z. Wise ◽  
D. R. Irvine

1. The auditory responses of 207 single neurons in the intermediate and deep layers of the superior colliculus (SC) of barbiturate -or chloralose-anesthetized cats were recorded extracellularly. Sealed stimulating systems incorporating calibrated probe microphone assemblies were employed to present tone- and noise-burst stimuli. 2. All acoustically activated neurons responded with onset responses to noise bursts. Of those neurons also tested with tonal stimuli, approximately 30% were unresponsive over the frequency range tested (0.1-40 kHz), while the others had higher thresholds to tones than to noise. 3. Details of frequency responsiveness were obtained for 55 neurons; 21 were broadly tuned, while 34 were sharply tuned with clearly defined characteristic frequencies (CFs). All sharply tuned neurons had CFs greater than or equal to 10 kHz. 4. The majority of neurons (81%) responded with latencies in the range 8-20 ms; only 11% of neurons had latencies greater than 30 ms. 5. Binaural response properties were examined for 165 neurons. The great majority (79%) received monaural excitatory input only from the contralateral ear (EO). However, most EO cells were binaurally influenced, the contralateral response being either inhibited (EO/I; 96 of 131 units) or facilitated (EO/F; 33 of 131 units) by simultaneous ipsilateral stimulation. Small subgroups were monaurally excited by either ear (EE cells; 8%) or were unresponsive monaurally but responded strongly to binaural stimulation (OO/F cells; 7%). 6. EO/I, EO/F, and OO/F neurons showed characteristic forms of sensitivity to interaural intensity differences (IIDs). The IID functions of EO/I neurons would be expected to produce large contralateral spatial receptive fields with clearly defined medial borders, such as have been described in studies of deep SC neurons employing free-field stimuli. 7. Preliminary evidence suggests a possible topographic organization of IID sensitivity in deep SC, such that the steeply sloping portion of the function (corresponding to the medial edge of the receptive field) is shifted laterally for EO/I neurons located more caudally in the nucleus. 8. The auditory properties of deep SC neurons are compared with previous reports and implications for the organization of auditory input are considered. The binaural properties and auditory spatial fields of deep SC neurons suggest that any representation of auditory space in this structure is unlikely to be based on restricted spatial fields.


1993 ◽  
Vol 90 (23) ◽  
pp. 11142-11146 ◽  
Author(s):  
S Bisti ◽  
C Trimarchi

Prenatal unilateral enucleation in mammals causes an extensive anatomical reorganization of visual pathways. The remaining eye innervates the entire extent of visual subcortical and cortical areas. Electrophysiological recordings have shown that the retino-geniculate connections are retinotopically organized and geniculate neurones have normal receptive field properties. In area 17 all neurons respond to stimulation of the remaining eye and retinotopy, orientation columns, and direction selectivity are maintained. The only detectable change is a reduction in receptive field size. Are these changes reflected in the visual behavior? We studied visual performance in cats unilaterally enucleated 3 weeks before birth (gestational age at enucleation, 39-42 days). We tested behaviorally the development of visual acuity and, in the adult, the extension of the visual field and the contrast sensitivity. We found no difference between prenatal monocularly enucleated cats and controls in their ability to orient to targets in different positions of the visual field or in their visual acuity (at any age). The major difference between enucleated and control animals was in contrast sensitivity:prenatal enucleated cats present a loss in sensitivity for gratings of low spatial frequency (below 0.5 cycle per degree) as well as a slight increase in sensitivity at middle frequencies. We conclude that prenatal unilateral enucleation causes a selective change in the spatial performance of the remaining eye. We suggest that this change is the result of a reduction in the number of neurones with large receptive fields, possibly due to a severe impairment of the Y system.


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1976 ◽  
Vol 39 (3) ◽  
pp. 613-630 ◽  
Author(s):  
W. Singer ◽  
F. Tretter

An attempt was made to relate the alterations of cortical receptive fields as they result from binocular visual deprivation to changes in afferent, intrinsic, and efferent connections of the striate and parastriate cortex. The experiments were performed in cats aged at least 1 jr with their eyelids sutured closed from birth.The results of the receptive-field analysis in A17 confirmed the reduction of light-responsive cells, the occasional incongruity of receptive-field properties in the two eyes, and to some extent also the loss of orientation and direction selectivity as reported previously. Other properties common to numerous deprived receptive fields were the lack of sharp inhibitory sidebands and the sometimes exceedingly large size of the receptive fields. Qualitatively as well as quantitatively, similar alterations were observed in area 18. A rather high percentage of cells in both areas had, however, preserved at least some orientation preference, and a few receptive fields had tuning properties comparable to those in normal cats. The ability of area 18 cells in normal cats to respond to much higher stimulus velocities than area 17 cells was not influenced by deprivation.The results obtained with electrical stimulation suggest two main deprivation effects: 1) A marked decrease in the safety factor of retinothalamic and thalamocortical transmission. 2) A clear decrease in efficiency of intracortical inhibition. But the electrical stimulation data also show that none of the basic principles of afferent, intrinsic, and efferent connectivity is lost or changed by deprivation. The conduction velocities in the subcortical afferents and the differentiation of the afferents to areas 17 and 18 into slow- and fast-conducting projection systems remain unaltered. Intrinsic excitatory connections remain functional; this is also true for the disynaptic inhibitory pathways activated preferentially by the fast-conducting thalamocortical projection. The laminar distribution of cells with monosynaptic versus polsynaptic excitatory connections is similar to that in normal cats. Neurons with corticofugal axons remain functionally connected and show the same connectivity pattern as those in normal cats. The nonspecific activation system from the mesencephalic reticular formation also remains functioning both at the thalamic and the cortical level.We conclude from these and several other observations that most, if not all, afferent, intrinsic, and efferent connections of areas 17 and 18 are specified from birth and depend only little on visual experience. This predetermined structural plan, however, allows for some freedom in the domain of orientation tuning, binocular correspondence, and retinotopy which is specified only when visual experience is possible.


Sign in / Sign up

Export Citation Format

Share Document