Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a Hebbian rule

1990 ◽  
Vol 64 (3) ◽  
pp. 948-960 ◽  
Author(s):  
D. Jaffe ◽  
D. Johnston

1. The induction of long-term potentiation (LTP) at hippocampal mossy-fiber synapses requires an increase in postsynaptic [Ca2+]i but is independent of N-methyl-D-aspartate (NMDA) receptor activation. Voltage-gated Ca2+ channels have been proposed as one alternative source for raising [Ca2+]i during the induction of LTP. We tested the hypothesis that voltage-gated Ca2+ channel activation could mediate the induction of LTP by examining whether 1) the induction of mossy-fiber LTP was dependent on postsynaptic depolarization and 2) depolarization alone, of a magnitude presumably capable of activating Ca2+ channels, was sufficient to induce LTP. 2. Intracellular recordings were made from rat CA3 pyramidal cells in the hippocampal slice preparation under both current- and voltage-clamp conditions. Mossy-fiber postsynaptic potentials and currents were recorded before and after high-frequency stimulation (HFS) in the presence of 20-50 microM D-2-amino-5-phosphonovaleric acid (D-APV), an NMDA-receptor antagonist. 3. Voltage clamping of CA3 neurons between -80 and -100 mV during HFS reversibly blocked the induction of mossy-fiber LTP. Conversely, HFS paired with depolarizing-current steps under current clamp increased the magnitude of LTP compared with controls. These results indicate that mossy-fiber LTP is dependent on postsynaptic depolarization, and presynaptic activation alone was not sufficient to induce mossy-fiber LTP. 4. Depolarizing-current injections, which presumably depolarized CA3 cells to potentials sufficient to activate voltage-gated Ca2+ channels, had no effect on mossy-fiber synaptic responses. These results suggest that synaptic activation, in addition to postsynaptic depolarization, is required for the induction of mossy-fiber LTP. 5. Single mossy-fiber afferent volleys were also paired with depolarizing-current pulses. In the presence of APV, pairing of single-mossy-fiber excitatory postsynaptic potentials (EPSPs) with postsynaptic depolarization did not potentiate synaptic responses, suggesting that some form of HFS is also required for mossy-fiber LTP. In the absence of APV, however, the contamination of mossy-fiber synaptic responses by CA3-recurrent inputs resulted in some potentiation. 6. These results suggest that the induction of mossy-fiber LTP is dependent on both pre- and postsynaptic activity and thus follows a Hebbian rule for synaptic modification. In contrast to that demonstrated at Schaffer-collateral-commissural synapses, however, the induction of mossy-fiber LTP may require HFS in addition to postsynaptic depolarization.(ABSTRACT TRUNCATED AT 400 WORDS)

1993 ◽  
Vol 69 (5) ◽  
pp. 1774-1778 ◽  
Author(s):  
V. Crepel ◽  
C. Hammond ◽  
K. Krnjevic ◽  
P. Chinestra ◽  
Y. Ben-Ari

1. The effects of an anoxic-aglycemic episode (1-3 min) on the pharmacologically isolated N-methyl-D-aspartate (NMDA)-mediated responses were examined in CA1 pyramidal hippocampal neurons in vitro. 2. An anoxic-aglycemic episode induced a long term potentiation (LTP) of the NMDA receptor-mediated field excitatory post-synoptic potentials (EPSPs). This LTP, referred to as anoxic LTP, was observed in the presence of 1) a normal Mg2+ concentration [+40.1 +/- 5% (mean +/- SE)], 2) a low Mg2+ concentration (+52.2 +/- 10%), or 3) a Mg2+ free (+49 +/- 11%), 1 h after anoxia. 3. Bath application of D-2-amino-5-phosphonovaleric acid (D-APV, 20 microM, 15-21 min) before, during, and after the anoxic-aglycemic episode, which transiently blocked the synaptic NMDA receptor mediated response, prevented the induction of anoxic LTP. 4. The intracellularly recorded NMDA receptor-mediated EPSP was also persistently potentiated by anoxia-aglycemia (+47 +/- 4%). This potentiation was not associated with changes in membrane potential or input resistance. 5. These findings provide the first evidence that an anoxic-aglycemic episode induces an LTP of NMDA receptor-mediated responses. This potentiation may participate in the cascade of events that lead to delayed neuronal death.


2003 ◽  
Vol 358 (1432) ◽  
pp. 721-726 ◽  
Author(s):  
Roger A. Nicoll

This review summarizes the various experiments that have been carried out to determine if the expression of long-term potentiation (LTP), in particular N -methyl-D-aspartate (NMDA) receptor-dependent LTP, is presynaptic or postsynaptic. Evidence for a presynaptic expression mechanism comes primarily from experiments reporting that glutamate overflow is increased during LTP and from experiments showing that the failure rate decreases during LTP. However, other experimental approaches, such as monitoring synaptic glutamate release by recording astrocytic glutamate transporter currents, have failed to detect any change in glutamate release during LTP. In addition, the discovery of silent synapses, in which LTP rapidly switches on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function at NMDA-receptor-only synapses, provides a postsynaptic mechanism for the decrease in failures during LTP. It is argued that the preponderance of evidence favours a postsynaptic expression mechanism, whereby NMDA receptor activation results in the rapid recruitment of AMPA receptors as well as a covalent modification of synaptic AMPA receptors.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222066 ◽  
Author(s):  
Michelle L. Kloc ◽  
Bruno Pradier ◽  
Anda M. Chirila ◽  
Julie A. Kauer

2010 ◽  
Vol 104 (4) ◽  
pp. 2203-2213 ◽  
Author(s):  
Debika Chatterjea ◽  
Edaeni Hamid ◽  
John P. Leonard ◽  
Simon Alford

N-methyl-d-aspartate (NMDA) receptor-mediated currents are enhanced by phosphorylation. We have investigated effects of phosphorylation-dependent short-term plasticity of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) on the induction of long-term depression (LTD). We confirmed in whole cell clamped CA1 pyramidal neurons that LTD is induced by pairing stimulus protocols. However, after serine-threonine phosphorylation was modified by postsynaptic introduction of a protein phosphatase-1 (PP1) inhibitor, the same pairing protocol evoked long-term potentiation (LTP). We determined effects of modification of phosphatase activity on evoked NMDA EPSCs during LTD induction protocols. During LTD induction, using a protocol pairing depolarization to –40 mV and 0.5 Hz stimulation, NMDA receptor-mediated EPSCs undergo a short-term enhancement at the start of the protocol. In neurons in which PP1 activity was inhibited, this short-term enhancement was markedly amplified. We then investigated the effect of this enhancement on Ca2+ entry during the start of the LTD induction protocol. Enhancement of NMDA receptor-mediated responses was accompanied by an amplification of induction protocol-evoked Ca2+ transients. Furthermore, this amplification required synaptic activation during the protocol, consistent with an enhancement of Ca2+ entry mediated by NMDA receptor activation. The sign of NMDA receptor-mediated long-term plasticity, whether potentiation or depression depends on the amplitude of the synaptic Ca2+ transient during induction. We conclude that short-term phosphorylation-dependent plasticity of the NMDA receptor-mediated EPSCs contributes significantly to the effect of phosphatase inhibition on the subsequent induction of LTD or LTP.


1998 ◽  
Vol 80 (1) ◽  
pp. 452-457 ◽  
Author(s):  
Eric Klann

Klann, Eric. Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J. Neurophysiol. 80: 452–457, 1998. Long-term potentiation (LTP) in hippocampal area CA1 is generally dependent on N-methyl-d-aspartate (NMDA) receptor activation. Reactive oxygen species (ROS), including superoxide, are produced in response to NMDA receptor activation in a number of brain regions, including the hipppocampus. In this study, two cell-permeable manganese porphyrin compounds that mimic superoxide dismutase (SOD) were used to determine whether production of superoxide is required for the induction of LTP in area CA1 of rat hippocampal slices. Incubation of hippocampal slices with either Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) or Mn(III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP) prevented the induction of LTP. Incubation of slices with either light-inactivated MnTBAP or light-inactivated MnTMPyP had no effect on induction of LTP. Neither MnTBAP nor MnTMPyP was able to reverse preestablished LTP. These observations suggest that production of superoxide occurs in response to LTP-inducing stimulation and that superoxide is necessary for the induction of LTP.


1999 ◽  
Vol 81 (1) ◽  
pp. 277-287 ◽  
Author(s):  
Egidio D'Angelo ◽  
Paola Rossi ◽  
Simona Armano ◽  
Vanni Taglietti

D'Angelo, Egidio, Paola Rossi, Simona Armano, and Vanni Taglietti. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber–granule cell transmission in rat cerebellum. J. Neurophysiol. 81: 277–287, 1999. Long-term potentiation (LTP) is a form of synaptic plasticity that can be revealed at numerous hippocampal and neocortical synapses following high-frequency activation of N-methyl-d-aspartate (NMDA) receptors. However, it was not known whether LTP could be induced at the mossy fiber–granule cell relay of cerebellum. This is a particularly interesting issue because theories of the cerebellum do not consider or even explicitly negate the existence of mossy fiber–granule cell synaptic plasticity. Here we show that high-frequency mossy fiber stimulation paired with granule cell membrane depolarization (−40 mV) leads to LTP of granule cell excitatory postsynaptic currents (EPSCs). Pairing with a relatively hyperpolarized potential (−60 mV) or in the presence of NMDA receptor blockers [5-amino-d-phosphonovaleric acid (APV) and 7-chloro-kynurenic acid (7-Cl-Kyn)] prevented LTP, suggesting that the induction process involves a voltage-dependent NMDA receptor activation. Metabotropic glutamate receptors were also involved because blocking them with (+)-α-methyl-4-carboxyphenyl-glycine (MCPG) prevented potentiation. At the cytoplasmic level, EPSC potentiation required a Ca2+ increase and protein kinase C (PKC) activation. Potentiation was expressed through an increase in both the NMDA and non-NMDA receptor-mediated current and by an NMDA current slowdown, suggesting that complex mechanisms control synaptic efficacy during LTP. LTP at the mossy fiber–granule cell synapse provides the cerebellar network with a large reservoir for memory storage, which may be needed to optimize pattern recognition and, ultimately, cerebellar learning and computation.


Sign in / Sign up

Export Citation Format

Share Document