Motor-unit recruitment in the decerebrate cat: several unit properties are equally good predictors of order

1991 ◽  
Vol 66 (4) ◽  
pp. 1127-1138 ◽  
Author(s):  
T. C. Cope ◽  
B. D. Clark

1. Recruitment order was studied in pairs of motor units of the medial gastrocnemius (MG) muscle of decerebrate cats with the use of dual microelectrode recording from intact ventral root filaments. Excitation was provided by stretch of MG, stretch of synergists [lateral gastrocnemius (LG), plantaris (PL), and soleus (SOL) muscles] or electrical stimulation of the caudal cutaneous sural (CCS) nerve. Motor units were characterized by axonal conduction velocity (CV), tetanic tension (Pmax), twitch contraction time (CT), and fatigue index (FI). 2. Consistent with the recruitment pattern described by others, most often in relation to either CV or Pmax, the first unit of a pair to be recruited by MG stretch was typically the one with the lower CV and Pmax, and the higher FI and CT. The proportion of pairs that agreed in rank order of each property and recruitment order was as follows: for CT, 94%; for CV, 87%; for Pmax, 84%; and for FI, 75%. With a single marginal exception (CT vs. FI), no motor-unit property proved to be significantly better than the others at predicting recruitment (G test; P greater than 0.05). 3. In all 11 tested pairs containing one slow (type S) and one fast (type F) unit, the S was more easily recruited by stretch. Type F units divided into groups with high (type FR), low (type FF), and intermediate (type FInt) values for FI were recruited in order from FR to FInt to FF in 8/11 pairs. Thus our findings were similar to earlier demonstrations that recruitment proceeds in order by type. 4. Stretch of MG synergists usually recruited units in the same order as MG stretch. In two S-S pairs, recruitment order was switched with synergist stretch. 5. Stimulation of the CCS nerve was generally excitatory to the MG units sampled. Most unit pairs were recruited by CCS stimulation in the same order as by MG stretch, but, for 6 of 39 pairs, CCS stimulation switched the order produced by stretch. Thus, whereas sural afferent input can preferentially excite some units over others as suggested by Kanda et al., that effect is not widespread or selective for unit type under these conditions. 6. Assuming that all MG motor units cooperate as a single functional pool in homonymous stretch reflexes, we support others in concluding that a motoneuron's recruitment threshold is not strictly determined by its size. However, our data do not distinguish other schemes that predict recruitment order more accurately than the size principle.(ABSTRACT TRUNCATED AT 400 WORDS)

1993 ◽  
Vol 70 (4) ◽  
pp. 1433-1439 ◽  
Author(s):  
B. D. Clark ◽  
S. M. Dacko ◽  
T. C. Cope

1. An attempt was made to repeat the observation that cutaneous input to the cat medial gastrocnemius (MG) muscle sometimes had the differential effect of inhibiting motoneurons with slow axonal conduction velocity while simultaneously exciting others with fast conduction velocity. Dual microelectrode recording from intact ventral root filaments was used to study the effects of cutaneous inputs on recruitment order and on firing frequency of physiologically characterized MG motor units in decerebrate cats. Motor responses to pinch of the skin over the lateral surface of the ankle as well as electrical stimulation of the caudal cutaneous sural (CCS) nerve were contrasted with the responses to static muscle stretch as well as muscle vibration. 2. In contrast to the prediction, recruitment order in pairwise tests was the same for skin pinch or CCS stimulation as it was for MG stretch or vibration in all 32 tested pairs of motor units. This sample included seven pairs comprising one slow-twitch (S) and one fast-twitch motor unit, where the predicted reversal of recruitment should have been most apparent. Regardless of the source of excitation, recruitment of motor units of the MG was consistent with Henneman's size principle in approximately 90% of trials. 3. Skin pinch increased the firing rate of 30 of 32 individual motor units previously activated by stretch or vibration, including 7 slow-twitch units. In the remaining two units, skin pinch transiently (100-400 ms) slowed the firing of an S unit in 11 of 13 vibration + pinch trials. The other unit (type unknown) showed one or two retarded spikes in each of four vibration + pinch trials. In three S units, including the lone inhibitable unit and two others that were only excited by skin pinch, there was a significant positive rank correlation between change in unit firing frequency and change in soleus integrated electromyographic activity.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 78 (6) ◽  
pp. 3077-3082 ◽  
Author(s):  
Timothy C. Cope ◽  
Alan J. Sokoloff ◽  
Stan M. Dacko ◽  
Rebecca Huot ◽  
Eleanor Feingold

Cope, Timothy C., Alan J. Sokoloff, Stan M. Dacko, Rebecca Huot, and Eleanor Feingold. Stability of motor-unit force thresholds in the decerebrate cat. J. Neurophysiol. 78: 3077–3082, 1997. To further test the hypothesis that some fixed property of motoneurons determines their recruitment order, we quantified the variation in force threshold (FT) for motoneurons recruited in muscle stretch reflexes in the decerebrate cat. Motor axons supplying the medial gastrocnemius (MG) muscle were penetrated with micropipettes and physiological properties of the motoneuron and its muscle fibers, i.e., the motor unit, were measured. FT, defined as the amount of MG force produced when the isolated motor unit was recruited, was measured from 20 to 93 consecutive stretch trials for 29 motor units. Trials were selected for limited variation in base force and rate of rise of force, which have been shown to covary with FT, and in peak stretch force, which gives some index of motor-pool excitability. Under these restricted conditions, large variation in FT would have been inconsistent with the hypothesis. Analysis of the variation in FT employed the coefficient of variation (CV), because of the tendency for FT variance and mean to increase together. We found that CV was distributed with a median value of 10% and with only 2 of 29 units exceeding 36%. Some of this variation was associated with measurement error and with intertrial fluctuations in base, peak, and the rate of change of muscle force. CV was not significantly correlated with motor-unit axonal conduction velocity, contraction time, or force. In three cases FT was measured simultaneously from two motor units in the same stretch trials. Changes in recruitment order were rarely observed (5 of 121 stretch trials), even when FT ranges for units in a pair overlapped. We suggest that the large variation in recruitment threshold observed in some earlier studies resulted not from wide variation in the recruitment ranking of motoneurons within one muscle, but rather from variation in the relative activity of different pools of motoneurons. Our findings are consistent with the hypothesis that recruitment order is determined by some fixed property of α-motoneurons and/or by some unvarying combination of presynaptic inputs that fluctuate in parallel.


2001 ◽  
Vol 86 (2) ◽  
pp. 616-628 ◽  
Author(s):  
Valerie K. Haftel ◽  
Jonathan F. Prather ◽  
C. J. Heckman ◽  
Timothy C. Cope

This study provides the first test in vivo of the hypothesis that group Ia muscle-stretch afferents aid in preventing reversals in the orderly recruitment of motoneurons. This hypothesis was tested by studying recruitment of motoneurons deprived of homonymous afferent input. Recruitment order was measured in decerebrate, paralyzed cats from dual intra-axonal records obtained simultaneously from pairs of medial gastrocnemius (MG) motoneurons. Pairs of MG motor axons were recruited in eight separate trials of the reflex discharge evoked by stimulation of the caudal cutaneous sural (CCS) nerve. Some reports suggest that reflex recruitment by this cutaneous input should bias recruitment against order by the size principle in which the axon with the slower conduction velocity (CV) in a pair is recruited to fire before the faster CV axon. Recruitment was studied in three groups of cats: ones with the MG nerve intact and untreated (UNTREATED); ones with the MG nerve cut (CUT); and ones with the MG nerve cut and bathed at its proximal end in lidocaine solution (CUT+). The failure of electrical stimulation to initiate a dorsal root volley and the absence of action potentials in MG afferents demonstrated the effective elimination of afferent feedback in the CUT+ group. Recruitment order by the size principle predominated and was not statistically distinguishable among the three groups. The percentage of pairs recruited in reverse order of the size principle was actually smaller in the CUT+ group (6%) than in CUT (15%) or UNTREATED (19%) groups. Thus homonymous afferent feedback is not necessary to prevent recruitment reversal. However, removing homonymous afferent input did result in the expression of inconsistency in order, i.e., switches in recruitment sequence from one trial to the next, for more axon pairs in the CUT+ group (33%) than for the other groups combined (13%). Increased inconsistency in the absence of increased reversal of recruitment order was approximated in computer simulations by increasing time-varying fluctuations in synaptic drive to motoneurons and could not be reproduced simply by deleting synaptic current from group Ia homonymous afferents, regardless of how that current was distributed to the motoneurons. These findings reject the hypothesis that synaptic input from homonymous group Ia afferents is necessary to prevent recruitment reversals, and they are consistent with the assertion that recruitment order is established predominantly by properties intrinsic to motoneurons.


1984 ◽  
Vol 52 (3) ◽  
pp. 410-420 ◽  
Author(s):  
P. Bawa ◽  
M. D. Binder ◽  
P. Ruenzel ◽  
E. Henneman

Motor units of soleus and medial gastrocnemius (MG) muscles were studied in pairs during stretch reflexes in the decerebrate cat to determine the relation between their recruitment orders and axonal conduction velocities. In 97% of soleus pairs, the motor unit with the lower axonal conduction velocity was recruited first. Since the soleus is a homogeneous muscle in the cat, differences in motor-unit type are, therefore, not a sine qua non for orderly recruitment nor is recruitment random within homogeneous populations of motor units, as recently proposed (28). In the medial gastrocnemius, a heterogeneous muscle, the same high correlation (97%) between recruitment sequence and conduction velocity was observed. Thus, the factors that determine recruitment order in heterogeneous muscles are as closely correlated with axonal diameter as they are in homogeneous muscles. Comparison of axonal conduction velocities in our sample of MG units with those in three samples of type-identified MG units studied by other investigators also suggests that motor-unit type is not the critical factor controlling the sequence of activation in heterogeneous muscles. It is concluded that the combined effects of all presynaptic and postsynaptic factors that determine susceptibility to discharge in motoneurons during stretch reflexes are strictly correlated with their axonal conduction velocities, as predicted by the size principle.


1999 ◽  
Vol 81 (5) ◽  
pp. 2485-2492 ◽  
Author(s):  
Alan J. Sokoloff ◽  
Sondra G. Siegel ◽  
Timothy C. Cope

Recruitment order among motoneurons from different motor nuclei. The principles by which motoneurons (MNs) innervating different multiple muscles are organized into activity are not known. Here we test the hypothesis that coactivated MNs belonging to different muscles in the decerebrate cat are recruited in accordance with the size principle, i.e., that MNs with slow conduction velocity (CV) are recruited before MNs with higher CV. We studied MN recruitment in two muscle pairs, the lateral gastrocnemius (LG) and medial gastrocnemius (MG) muscles, and the MG and posterior biceps femoris (PBF) muscles because these pairs are coactivated reliably in stretch and cutaneous reflexes, respectively. For 29/34 MG-LG pairs of MNs, the MN with lower CV was recruited first either in all trials (548/548 trials for 22 pairs) or in most trials (225/246 trials for 7 pairs), whether the MG or the LG MN in a pair was recruited first. Intertrial variability in the force thresholds of MG and LG MNs recruited by stretch was relatively low (coefficient of variation = 18% on average). Finally, punctate stimulation of the skin over the heel recruited 4/4 pairs of MG-LG MNs in order by CV. By all of these measures, recruitment order is as consistent among MNs from these two ankle muscles as it is for MNs supplying the MG muscle alone. For MG-PBF pairings, the MN with lower CV was recruited first in the majority of trials for 13/24 pairs and in reverse order for 9/24 pairs. The recruitment sequence of coactive MNs supplying the MG and PBF muscles was, therefore, random with respect to axonal conduction velocity and not organized as predicted by the size principle. Taken together, these findings demonstrate for the first time, that the size principle can extend beyond the boundaries of a single muscle but does not coordinate all coactive muscles in a limb.


1996 ◽  
Vol 75 (1) ◽  
pp. 26-37 ◽  
Author(s):  
K. E. Tansey ◽  
B. R. Botterman

1. The recruitment order of 64 pairs of motor units, comprising 21 type-identified units, was studied during centrally evoked muscle contractions of the cat medial gastrocnemius (MG) muscle in an unanesthetized, high decerebrate preparation. Motor units were functionally isolated within the MG nerve by intra-axonal (or intramyelin) penetration with conventional glass microelectrodes. 2. Graded stimulation of the mesencephalic locomotor region (MLR) was used to evoke smoothly graded contractions, which under favorable conditions was estimated to reach 40% of maximum tetanic tension of the MG muscle. With this method of activation, 100% of slow twitch (type S) units, 95% of fast twitch, fatigue-resistant (type FR) units, 86% of fast twitch, fatigue-intermediate (type FI) units, and 49% of fast twitch, fatigable (type FF) units studied were recruited. 3. Motoneuron size as estimated by axonal conduction velocity (CV) was correlated with muscle-unit size as estimated by maximum tetanic tension (Po). Although the correlation between these properties was significant among type S and FR units, no significant correlation was found for these properties among type FI and FF units. 4. Motor-unit recruitment was ordered by physiological type (S > F, 100% of pairs; S > FR > FI > FF, 93% of pairs). Although none of the motor-unit properties studied predicted recruitment order perfectly, motor-unit recruitment was found to proceed by increasing Po (89% of pairs), decreasing contraction time (79% of pairs), decreasing fatigue index (80% of pairs), and increasing CV (76% of pairs). These percentages were significantly different from random (i.e., 50%). Statistically, all four motor-unit properties were equivalent in predicting recruitment order. These results are similar to those reported by other investigators for motor-unit recruitment order evoked from other supraspinal centers, as well as from peripheral sites. 5. When, however, motor-unit recruitment within pairs of motor units containing two fast-twitch (type F) units was examined, Po was a significantly better predictor of recruitment order than CV (85% vs. 52% of pairs). One explanation for this observation is that the correlation between Po and CV is high among type S, type FR units, and possibly among the lower-tension type FF units, but not among the remaining higher-tension type FF units. 6. The reproducibility of recruitment order in multiple contractions was investigated in 16 motor-unit pairs. Recruitment order was found to be variable in only three motor-unit pairs, all of which contained units of similar physiological type and recruitment threshold. 7. Analysis of recruitment order by pair-wise testing confirms the general conclusion reached in human studies that the muscle force level at recruitment for a motor unit is highly correlated with its strength. As an additional confirmation, the whole-muscle force level at recruitment for 41 units was measured in a series of contractions in which the rate of rise of muscle tension was limited to rates < 1,000 g/s. For these contractions, a significant correlation was found between muscle tension at recruitment and motor-unit Po.


2014 ◽  
Vol 112 (7) ◽  
pp. 1685-1691 ◽  
Author(s):  
Christopher J. Dakin ◽  
Brian H. Dalton ◽  
Billy L. Luu ◽  
Jean-Sébastien Blouin

Rectification of surface electromyographic (EMG) recordings prior to their correlation with other signals is a widely used form of preprocessing. Recently this practice has come into question, elevating the subject of EMG rectification to a topic of much debate. Proponents for rectifying suggest it accentuates the EMG spike timing information, whereas opponents indicate it is unnecessary and its nonlinear distortion of data is potentially destructive. Here we examine the necessity of rectification on the extraction of muscle responses, but for the first time using a known oscillatory input to the muscle in the form of electrical vestibular stimulation. Participants were exposed to sinusoidal vestibular stimuli while surface and intramuscular EMG were recorded from the left medial gastrocnemius. We compared the unrectified and rectified surface EMG to single motor units to determine which method best identified stimulus-EMG coherence and phase at the single-motor unit level. Surface EMG modulation at the stimulus frequency was obvious in the unrectified surface EMG. However, this modulation was not identified by the fast Fourier transform, and therefore stimulus coherence with the unrectified EMG signal failed to capture this covariance. Both the rectified surface EMG and single motor units displayed significant coherence over the entire stimulus bandwidth (1–20 Hz). Furthermore, the stimulus-phase relationship for the rectified EMG and motor units shared a moderate correlation ( r = 0.56). These data indicate that rectification of surface EMG is a necessary step to extract EMG envelope modulation due to motor unit entrainment to a known stimulus.


1987 ◽  
Vol 57 (4) ◽  
pp. 1227-1245 ◽  
Author(s):  
R. C. Foehring ◽  
G. W. Sypert ◽  
J. B. Munson

We tested whether the muscle innervated may influence the expression of motoneuron electrical properties. Properties of individual motor units were examined following cross-reinnervation (X-reinnervation) of cat lateral gastrocnemius (LG) and soleus muscles by the medial gastrocnemius (MG) nerve. We examined animals at two postoperative times: 9-10 wk (medX) and 9-11 mo (longX). For comparison, normal LG and soleus motoneuron properties were also studied. Motor units were classified on the basis of their contractile responses as fast contracting fatigable, fast intermediate fast contracting fatigue resistant, and slow types FF, FI, FR, or S, respectively) (9, 21). Motoneuron electrical properties (rheobase, input resistance, axonal conduction velocity, afterhyperpolarization) were measured. After 9-11 mo, MG motoneurons that innervated LG muscle showed recovery of electrical properties similar to self-regenerated MG motoneurons. The relationships between motoneuron electrical properties were largely similar to self-regenerated MG. For MG motoneurons that innervated LG, motoneuron type (65) predicted motor-unit type in 74% of cases. LongX-soleus motoneurons differed from longX-LG motoneurons or self-regenerated MG motoneurons in mean values for motoneuron electrical properties. The differences in overall means reflected the predominance of type S motor units. The relationships between motoneuron electrical properties were also different than in self-regenerated MG motoneurons. In all cases, the alterations were in the direction of properties of type S units, and the relationship between normal soleus motoneurons and their muscle units. Within motor-unit types, the mean values were typical for that type in self-regenerated MG. Motoneuron type (65) was a fairly strong predictor of motor-unit type in longX soleus. MG motoneurons that innervated soleus displayed altered values for axonal conduction velocity, rheobase, and input resistance, which could indicate incomplete recovery from the axotomized state. However, although mean afterhyperpolarization (AHP) half-decay time was unaltered by axotomy (25), this parameter was significantly lengthened in MG motoneurons that innervated soleus muscle. There were, however, individual motoneuron-muscle-unit mismatches, which suggested that longer mean AHP half-decay time may also be due to incomplete recovery of a subpopulation of motoneurons. Those MG motoneurons able to specify soleus muscle-fiber type exhibited motoneuron electrical properties typical of that same motoneuron type in self-regenerated MG.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 66 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
R. K. Powers ◽  
M. D. Binder

1. The tension produced by the combined stimulation of two to four single motor units of the cat tibialis posterior muscle was compared with the algebraic sum of the tensions produced by each individual motor unit. Comparisons were made under isometric conditions and during imposed changes in muscle length. 2. Under isometric conditions, the tension resulting from combined stimulation of units displayed marked nonlinear summation, as previously reported in other cat hindlimb muscles. On average, the measured tension was approximately 20% greater than the algebraic sum of the individual unit tensions. However, small trapezoidal movements imposed on the muscle during stimulation significantly reduced the degree of nonlinear summation both during and after the movement. This effect was seen with imposed movements as small as 50 microns. 3. The degree of nonlinear summation was not dependent on motor unit size or on stimulus frequency. The effect was also unrelated to tendon compliance because the degree of nonlinear summation of motor unit forces was unaffected by the inclusion of different amounts of the external tendon between the muscle and the force transducer. 4. Our results support previous suggestions that the force measured when individual motor units are stimulated under isometric conditions is reduced by friction between the active muscle fibers and adjacent passive fibers. These frictional effects are likely to originate in the connective tissue matrix connecting adjacent muscle fibers. However, because these effects are virtually eliminated by small movements, linear summation of motor unit tensions should occur at low force levels under nonisometric conditions.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 76 (6) ◽  
pp. 2663-2671 ◽  
Author(s):  
L. J. Einsiedel ◽  
A. R. Luff

The aim of the study was to determine whether increased motoneuron activity induced by treadmill walking would alter the extent of motoneuron sprouting in the partially denervated rat medial gastrocnemius muscle. An extensive partial denervation was effected by unilateral section of the L5 ventral root, and it is very likely that all units remaining in the medial gastrocnemius were used in treadmill walking. Rats were trained for 1.5 h/day and after 14 days were walking at least 1 km/day. Motor unit characteristics were determined 24 days after the partial denervation and were compared with units from partially denervated control (PDC) animals and with units from normal (control) animals. In PDC rats, force developed by slow, fast fatigue-resistant, and fast intermediate-fatigable motor units increased substantially compared with control animals; that of fast-fatigable units did not increase. In partially denervated exercised animals, force developed by slow and fast-fatigue-resistant units showed no further increase, but fast-intermediate- and fast-fatigable units showed significant increases compared with those in PDC animals. The changes in force were closely paralleled by changes in innervation ratios. We concluded that neuronal activity is an important factor in determining the rate of motoneuron sprouting.


Sign in / Sign up

Export Citation Format

Share Document