motoneuron activity
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 4)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Irene Mendez Guerra ◽  
Deren Y. Barsakcioglu ◽  
Ivan Vujaklija ◽  
Daniel Z. Wetmore ◽  
Dario Farina

Despite the promising features of neural interfaces, their trade-off between information transfer and invasiveness has limited translation and viability outside research settings. Here, we present a non-invasive neural interface that provides access to spinal motoneuron activities from a sensor band at the wrist. The interface decodes electric signals present at the tendon endings of the forearm muscles by using a model of signal generation and deconvolution. First, we evaluated the reliability of the interface to detect motoneuron firings, and thereafter we used the decoded neural activity for the prediction of finger movements in offline and real-time conditions. The results showed that motoneuron activity decoded from the wrist accurately predicted individual and combined finger commands and therefore allowed for highly accurate real-time control. These findings demonstrate the feasibility of a wearable, non-invasive, neural interface at the wrist for precise real-time control based on the output of the spinal cord.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A27-A27
Author(s):  
C Tobin ◽  
S J Fung ◽  
M Xi ◽  
M H Chase

Abstract Introduction The present study was undertaken to explore the role of glycinergic postsynaptic inhibition and monoaminergic disfacilitation (a withdrawal of excitatory noradrenergic and serotonergic inputs) in the control of hypoglossal motoneuron activity during REM sleep. Accordingly, glycinergic, noradrenergic and serotonergic antagonists were microinjected into the hypoglossal nucleus, and their effects on the hypoglossal nerve activity during REM sleep were examined in chronically-instrumented, unanesthetized cats. Methods Adults cats were prepared for monitoring behavioral states of sleep and wakefulness, and for extracellular recordings from hypoglossal nerve. Strychnine (a glycinergic antagonist) and a mixture of prazosin (a noradrenergic antagonist) and methysergide (a serotonergic antagonist) were microinjected, separately, into the hypoglossal nucleus during naturally-occurring states of sleep and wakefulness. Results During REM sleep, compared to non-REM sleep, the hypoglossal nerve activity decreased by 17.4±1.5% (n=17) in the control recordings (prior to the injection of strychnine). Following the microinjection of strychnine, there was only a mean decrease of 7.2±1.2% (n=12) in the nerve activity during REM sleep versus NREM sleep. The strychnine effect was statistically significant compared to control (p<0.001; unpaired t-test), which indicates that strychnine blocks REM sleep-related suppression of hypoglossal nerve activity. In contrast, the microinjection of prazosin and methysergide did not significantly reduce the hypoglossal nerve activity during REM sleep (control: 15.9±2.3, n=9 vs. prazosin+methysergide: 12.6±1.4%, n=10, p=0.229, unpaired t-test). Conclusion The present results demonstrate that the microapplication of strychnine, but not prazosin and methysergide, into the hypoglossal nucleus significantly reduces the suppression of the hypoglossal nerve activity during naturally-occurring REM sleep. We therefore suggest that glycinergic postsynaptic inhibition is primarily responsible for the suppression of hypoglossal motoneuron activity during REM sleep. Support 5R01NS094062


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
H. Babski ◽  
T. Jovanic ◽  
C. Surel ◽  
S. Yoshikawa ◽  
M. F Zwart ◽  
...  

Abstract Interneurons (INs) coordinate motoneuron activity to generate appropriate patterns of muscle contractions, providing animals with the ability to adjust their body posture and to move over a range of speeds. In Drosophila larvae several IN subtypes have been morphologically described and their function well documented. However, the general lack of molecular characterization of those INs prevents the identification of evolutionary counterparts in other animals, limiting our understanding of the principles underlying neuronal circuit organization and function. Here we characterize a restricted subset of neurons in the nerve cord expressing the Maf transcription factor Traffic Jam (TJ). We found that TJ+ neurons are highly diverse and selective activation of these different subtypes disrupts larval body posture and induces specific locomotor behaviors. Finally, we show that a small subset of TJ+ GABAergic INs, singled out by the expression of a unique transcription factors code, controls larval crawling speed.


2019 ◽  
Vol 126 (5) ◽  
pp. 1232-1241 ◽  
Author(s):  
M. Bączyk ◽  
H. Drzymała-Celichowska ◽  
W. Mrówczyński ◽  
P. Krutki

Spinal polarization evoked by direct current stimulation [trans-spinal direct current stimulation (tsDCS)] is a novel method for altering spinal network excitability; however, it remains not well understood. The aim of this study was to determine whether tsDCS influences spinal motoneuron activity. Twenty Wistar rats under general pentobarbital anesthesia were subjected to 15 min anodal ( n = 10) or cathodal ( n = 10) tsDCS of 0.1 mA intensity, and the electrophysiological properties of their motoneurons were intracellularly measured before, during, and after direct current application. The major effects of anodal intervention included increased minimum firing frequency and the slope of the frequency-current ( f-I) relationship, as well as decreased rheobase and currents evoking steady-state firing (SSF). The effects of cathodal polarization included decreased maximum SSF frequency, decreased f-I slope, and decreased current evoking the maximum SSF. Notably, the majority of observed effects appeared immediately after the current onset, developed during polarization, and outlasted it for at least 15 min. Moreover, the effects of anodal polarization were generally more pronounced and uniform than those evoked by cathodal polarization. Our study is the first to present polarity-dependent, long-lasting changes in spinal motoneuron firing following tsDCS, which may aid in the development of more safe and accurate application protocols in medicine and sport. NEW & NOTEWORTHY Trans-spinal direct current stimulation induces significant polarity-dependent, long-lasting changes in the threshold and firing properties of spinal motoneurons. Anodal polarization potentiates motoneuron firing whereas cathodal polarization acts mainly toward firing inhibition. The alterations in rheobase and rhythmic firing properties are not restricted to the period of current application and can be observed long after the current offset.


2015 ◽  
Vol 114 (1) ◽  
pp. 184-198 ◽  
Author(s):  
Randall K. Powers ◽  
C. J. Heckman

Motoneuron activity is strongly influenced by the activation of persistent inward currents (PICs) mediated by voltage-gated sodium and calcium channels. However, the amount of PIC contribution to the activation of human motoneurons can only be estimated indirectly. Simultaneous recordings of pairs of motor units have been used to provide an estimate of the PIC contribution by using the firing rate of the lower threshold unit to provide an estimate of the common synaptic drive to both units, and the difference in firing rate (ΔF) of this lower threshold unit at recruitment and de-recruitment of the higher threshold unit to estimate the PIC contribution to activation of the higher threshold unit. It has recently been suggested that a number of factors other than PIC can contribute to ΔF values, including mechanisms underlying spike frequency adaptation and spike threshold accommodation. In the present study, we used a set of compartmental models representing a sample of 20 motoneurons with a range of thresholds to investigate how several different intrinsic motoneuron properties can potentially contribute to variations in ΔF values. We drove the models with linearly increasing and decreasing noisy conductance commands of different rate of rise and duration and determined the influence of different intrinsic mechanisms on discharge hysteresis (the difference in excitatory drive at recruitment and de-recruitment) and ΔF. Our results indicate that, although other factors can contribute, variations in discharge hysteresis and ΔF values primarily reflect the contribution of dendritic PICs to motoneuron activation.


2015 ◽  
Vol 3 (2) ◽  
pp. e12276 ◽  
Author(s):  
Berthe Hanna-Boutros ◽  
Sina Sangari ◽  
Louis-Solal Giboin ◽  
Mohamed-Mounir El Mendili ◽  
Alexandra Lackmy-Vallée ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document