scholarly journals Blockade of excitation reveals inhibition of dentate spiny hilar neurons recorded in rat hippocampal slices

1992 ◽  
Vol 68 (3) ◽  
pp. 978-984 ◽  
Author(s):  
H. E. Scharfman

1. Extracellular and intracellular recordings in rat hippocampal slices were used to compare the synaptic responses to perforant path stimulation of granule cells of the dentate gyrus, spiny “mossy” cells of the hilus, and area CA3c pyramidal cells of hippocampus. Specifically, we asked whether aspects of the local circuitry could explain the relative vulnerability of spiny hilar neurons to various insults to the hippocampus. 2. Spiny hilar cells demonstrated a surprising lack of inhibition after perforant path activation, despite robust paired-pulse inhibition and inhibitory postsynaptic potentials (IPSPs) in adjacent granule cells and area CA3c pyramidal cells in response to the same stimulus in the same slice. However, when the slice was perfused with excitatory amino acid antagonists [6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), or CNQX with 2-amino-5-phosphonovaleric acid (APV)], IPSPs could be observed in spiny hilar cells in response to perforant path stimulation. 3. The IPSPs evoked in spiny hilar cells in the presence of CNQX were similar in their reversal potentials and bicuculline sensitivity to IPSPs recorded in dentate granule cells or hippocampal pyramidal cells in the absence of CNQX. 4. These results demonstrate that, at least in slices, perforant path stimulation of spiny hilar cells is primarily excitatory and, when excitation is blocked, underlying inhibition can be revealed. This contrasts to the situation for dentate and hippocampal principal cells, which are ordinarily dominated by inhibition, and only when inhibition is compromised can the full extent of excitation be appreciated.(ABSTRACT TRUNCATED AT 250 WORDS)

1994 ◽  
Vol 72 (5) ◽  
pp. 2167-2180 ◽  
Author(s):  
H. E. Scharfman

1. Simultaneous intracellular recordings of area CA3 pyramidal cells and dentate hilar “mossy” cells were made in rat hippocampal slices to test the hypothesis that area CA3 pyramidal cells excite mossy cells monosynaptically. Mossy cells and pyramidal cells were differentiated by location and electrophysiological characteristics. When cells were impaled near the border of area CA3 and the hilus, their identity was confirmed morphologically after injection of the marker Neurobiotin. 2. Evidence for monosynaptic excitation of a mossy cell by a pyramidal cell was obtained in 7 of 481 (1.4%) paired recordings. In these cases, a pyramidal cell action potential was followed immediately by a 0.40 to 6.75 (mean, 2.26) mV depolarization in the simultaneously recorded mossy cell (mossy cell membrane potentials, -60 to -70 mV). Given that pyramidal cells used an excitatory amino acid as a neurotransmitter (Cotman and Nadler 1987; Ottersen and Storm-Mathisen 1987) and recordings were made in the presence of the GABAA receptor antagonist bicuculline (25 microM), it is likely that the depolarizations were unitary excitatory postsynaptic potentials (EPSPs). 3. Unitary EPSPs of mossy cells were prone to apparent “failure.” The probability of failure was extremely high (up to 0.72; mean = 0.48) if the effects of all presynaptic action potentials were examined, including action potentials triggered inadvertently during other spontaneous EPSPs of the mossy cell. Probability of failure was relatively low (as low as 0; mean = 0.24) if action potentials that occurred during spontaneous activity of the mossy cell were excluded. These data suggest that unitary EPSPs produced by pyramidal cells are strongly affected by concurrent synaptic inputs to the mossy cell. 4. Unitary EPSPs were not clearly affected by manipulation of the mossy cell's membrane potential. This is consistent with the recent report that area CA3 pyramidal cells innervate distal dendrites of mossy cells (Kunkel et al. 1993). Such a distal location also may contribute to the high incidence of apparent failures. 5. Characteristics of unitary EPSPs generated by pyramidal cells were compared with the properties of the unitary EPSPs produced by granule cells. In two slices, pyramidal cell and granule cell inputs to the same mossy cell were compared. In other slices, inputs to different mossy cells were compared. In all experiments, unitary EPSPs produced by granule cells were larger in amplitude but similar in time course to unitary EPSPs produced by pyramidal cells. Probability of failure was lower and paired-pulse facilitation more common among EPSPs triggered by granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 68 (5) ◽  
pp. 1548-1557 ◽  
Author(s):  
U. Misgeld ◽  
M. Bijak ◽  
H. Brunner ◽  
K. Dembowsky

1. The occurrence of potassium-dependent inhibitory postsynaptic potentials (K-IPSPs) in relation to burst discharges induced by 4-aminopyridine (4-AP; 30 microM) was studied in CA3, granule and hilar neurons in guinea pig hippocampal slices with the use of paired extra- and/or intracellular recording. 2. Slow small (2-5 mV) and large (up to 30 mV) K-IPSPs were observed in CA3, granule and in some hilar neurons during 4-AP applications in the presence of blockers for fast synaptic transmission, picrotoxin (50 microM), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 5-10 microM). Amplitudes of K-IPSPs were linearly related to voltage, and they reversed in sign close to -100 mV, as expected for synaptic potentials generated by an increase in K-conductance. 3. In CA3 neurons, 4-AP applied in the presence of picrotoxin elicited burst discharges and K-IPSPs. CNQX blocked the burst discharge activity and increased the amplitude of K-IPSPs. 4. In granule cells, 4-AP applied in the presence of picrotoxin elicited K-IPSPs and only inconsistently small excitatory postsynaptic potentials (EPSPs). The EPSPs were blocked by CNQX, but CNQX application did not affect the K-IPSPs. However, in granule cells it could be observed that blockade of Cl-inhibition by picrotoxin in the presence of CNQX increased the amplitude of K-IPSPs. 5. In hilar neurons, 4-AP applied in the presence of picrotoxin elicited mainly burst discharges. CNQX blocked the burst discharges only in a few cells. In most hilar neurons K-IPSPs were observed at the beginning of the 4-AP effect, but subsequently K-IPSPs were replaced by burst discharges. 6. To determine the type of cells that burst in picrotoxin and 4-AP, neurons were stained intracellularly with horseradish peroxidase. Neurons stained in the granule cell layer did not burst and were morphologically identified as granule cells. Neurons stained in the hilar region burst and were nonpyramidal, nongranule cells. Bursting cells stained in the CA3 area were all pyramidal cells. 7. The hilar neurons varied considerably in size and dendritic organization. They could be classified as aspiny and spiny cells, the latter including mossy cells. 8. We conclude that K-dependent inhibition may explain the long-lasting IPSPs observed in in vivo recordings from hippocampal cells. In a hippocampal lamella, burst discharge activity of hilar neurons including presumed excitatory mossy cells is associated with inhibition of granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 76 (1) ◽  
pp. 601-616 ◽  
Author(s):  
M. B. Jackson ◽  
H. E. Scharfman

1. Microelectrode recording and fluorescence measurement with voltage-sensitive dyes were employed in horizontal hippocampal slices from rat to investigate responses in the dentate gyrus to molecular layer and hilar stimulation. 2. Both field potential and dye fluorescence measurement revealed that electrical stimulation of the molecular layer produced strong excitation throughout large regions of the dentate gyrus at considerable distances from the site of stimulation. 3. Treatment of slices with the excitatory amino acid receptor antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) and (+/-)-2-amino-5-phosphonovaleric acid (APV) unmasked dye fluorescence signals in the outer and middle molecular layers corresponding to action potentials in axons, presumably belonging to the perforant path. The spread of these axonal signals away from the site of stimulation was far less extensive than the spread of control signals through the same regions before blockade of excitatory synapses. Large control responses could be seen in regions distant from the stimulation site where the axonal signals were not detectable. A lack of correlation between control signals and axonal signals revealed by DNQX and APV supports the hypothesis that responses in distal regions of the molecular layer were not dependent on perforant path axons. 4. The perforant path was cut by producing a lesion in the outer two-thirds of the molecular layer. Both dye fluorescence and microelectrode recording showed that stimulation on one side of the lesion could produce signals on the same side as well as across the lesion. The lesion did not block the spread of excitation through the molecular layer. Across the lesion from the site of stimulation, negative-going field potentials were observed to peak in the inner molecular layer, which is the major field of projection of hilar mossy cells. 5. Electrical stimulation in the hilus adjacent to the granule cell layer evoked dye fluorescence responses in the molecular layer. Stimulation at this site evoked negative-going field potentials that peaked in the inner molecular layer. These signals were sensitive to excitatory amino acid receptor antagonists but not to gamma-aminobutyric acid-A (GABAA) receptor antagonists. 6. Activation of excitatory amino acid receptors in the hilus by focal application of (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) elicited negative-going field potentials in the granule cell layer and depolarization of granule cells. Field potentials were blocked by tetrodotoxin (TTX), indicating that they were not caused by direct activation of receptors on granule cells, but rather by synapses from hilar neurons on granule cells. 7. These results taken together with previous studies of hilar mossy cells suggest a fundamental circuit consisting of granule cells exciting hilar mossy cells, which then excite more granule cells. This circuit provides positive feedback and can be considered a form of "recurrent excitation" unique to the dentate gyrus. The robustness of this circuit in hippocampal slices under control conditions suggest that mossy cell excitation of granule cells could play an important role in the normal activity of the hippocampus, and, when inhibition is compromised, this circuit could contribute to the generation and spread of seizures.


1993 ◽  
Vol 70 (2) ◽  
pp. 742-757 ◽  
Author(s):  
H. E. Scharfman

1. Excitation of the spiny subtype of hilar neurons in the fascia dentata was characterized by intracellular recording from hilar cells in hippocampal slices. Stimulation of the outer molecular layer was used to activate the perforant path. Evoked responses were examined, as well as the large spontaneous excitatory potentials that are a distinctive characteristic of spiny hilar cells. 2. Excitatory potentials that occurred spontaneously, as well as those that occurred in response to outer molecular layer stimulation, were similar among the cells that were sampled, regardless of morphological variations such as the presence or absence of thorny excrescences. Spontaneous and evoked excitatory postsynaptic potentials (EPSPs) were complex depolarizations that often had several discrete peaks. Spontaneous EPSPs increased in amplitude slightly with hyperpolarization, and evoked EPSPs clearly increased with hyperpolarization. 3. Applications of selective antagonists of excitatory amino acid receptors were used to determine which excitatory amino acid receptor mediates EPSPs of these cells. 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) was used to block the receptor subtype selective for the agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid (the "AMPA/kainate" receptor). 2-amino-5-phosphonovaleric acid (APV) was used to block receptors specific for the agonist N-methyl-D-aspartate (NMDA; the "NMDA" receptor). Perfusion with CNQX (5-25 microM) completely blocked all spontaneous and evoked excitation, even when activity was examined at relatively depolarized membrane potentials and a low concentration of extracellular magnesium (0.5 mM) was used. Under these conditions, APV (25-50 microM) had no detectable effect on spontaneous activity but did increase the stimulus strength required to elicit responses to outer molecular layer stimulation. 4. When extracellular magnesium was lowered to 0 mM (nominally), there was strong evidence for a contribution of NMDA receptors to spontaneous and evoked EPSPs. Thus, when cells were perfused with 0 mM extracellular magnesium and 5 microM CNQX, spontaneous depolarizations were present and EPSPs could be triggered by stimulation of the outer molecular layer. Both the spontaneous and evoked EPSPs were blocked by 25 microM APV. 5. Because gamma-aminobutyric acid (GABA)A receptors can cause depolarizations in hippocampal neurons, the GABAA receptor antagonist bicuculline was used to determine whether some of the EPSPs were mediated by GABAergic neurons that are normally activated by spontaneous release of excitatory amino acids. Bicuculline (5-25 microM) had no effect on spontaneous depolarizations, and led to an enhancement of evoked depolarizations. Therefore it does not appear that GABAA receptor-mediated depolarizations contribute to hilar cell depolarizations.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 78 (4) ◽  
pp. 1869-1881 ◽  
Author(s):  
Neil J. Berman ◽  
James Plant ◽  
Ray W. Turner ◽  
Leonard Maler

Berman, Neil J., James Plant, Ray W. Turner, and Leonard Maler. Excitatory amino acid receptors at a feedback pathway in the electrosensory system: implications for the searchlight hypothesis. J. Neurophysiol. 78: 1869–1881, 1997. The electrosensory lateral line lobe (ELL) of the South American gymnotiform fish Apteronotus leptorhynchus has a laminar structure: electroreceptor afferents terminate ventrally whereas feedback input distributes to a superficial molecular layer containing the dendrites of the ELL principle (pyramidal) cells. There are two feedback pathways: a direct feedback projection that enters the ELL via a myelinated tract (stratum fibrosum, StF) and terminates in the ventral molecular layer (VML) and an indirect projection that enters as parallel fibers and terminates in the dorsal molecular layer. It has been proposed that the direct feedback pathway serves as a “searchlight” mechanism. This study characterizes StF synaptic transmission to determine whether the physiology of the direct feedback projection is consistent with this hypothesis. We used field and intracellular recordings from the ELL to investigate synaptic transmission of the StF in an in vitro slice preparation. Stimulation of the StF produced field potentials with a maximal negativity confined to a narrow band of tissue dorsal to the StF. Current source density analysis revealed two current sinks: an early sink within the StF and a later sink that corresponded to the anatomically defined VML. Field potential recordings from VML demonstrated that stimulation of the StF evoked an excitatory postsynaptic potential (EPSP) that peaked at a latency of 4–7 ms with a slow decay (∼50 ms) to baseline. Intracellular recordings from pyramidal cells revealed that StF-evoked EPSPs consisted of at least two components: a fast gap junction mediated EPSP (peak 1.2–1.8 ms) and a chemical synaptic potential (peak 4–7 ms) with a slow decay phase (∼50 ms). The amplitudes of the peak and decay phases of the chemical EPSP were increased by depolarizing current injection. Pharmacological studies demonstrated that the chemical EPSP was mainly due to ionotropic glutamate receptors with both N-methyl-d-aspartate (NMDA) and non-NMDA components. NMDA receptors contributed substantially to both the early and late phase of the EPSP, whereas non-NMDA receptors contributed mainly to the early phase. Stimulation of the StF at physiological rates (100–200 Hz, 100 ms) produced an augmenting depolarization of the membrane potential of pyramidal cells. Temporal summation and a voltage-dependent enhancement of later EPSPs in the stimulus train permitted the compound EPSP to reach spike threshold. The nonlinear behavior of StF synaptic potentials is appropriate for the putative role of the direct feedback pathway as part of a searchlight mechanism allowing these fish to increase the electrodetectability of scanned objects.


Sign in / Sign up

Export Citation Format

Share Document