Positive feedback from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording

1996 ◽  
Vol 76 (1) ◽  
pp. 601-616 ◽  
Author(s):  
M. B. Jackson ◽  
H. E. Scharfman

1. Microelectrode recording and fluorescence measurement with voltage-sensitive dyes were employed in horizontal hippocampal slices from rat to investigate responses in the dentate gyrus to molecular layer and hilar stimulation. 2. Both field potential and dye fluorescence measurement revealed that electrical stimulation of the molecular layer produced strong excitation throughout large regions of the dentate gyrus at considerable distances from the site of stimulation. 3. Treatment of slices with the excitatory amino acid receptor antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) and (+/-)-2-amino-5-phosphonovaleric acid (APV) unmasked dye fluorescence signals in the outer and middle molecular layers corresponding to action potentials in axons, presumably belonging to the perforant path. The spread of these axonal signals away from the site of stimulation was far less extensive than the spread of control signals through the same regions before blockade of excitatory synapses. Large control responses could be seen in regions distant from the stimulation site where the axonal signals were not detectable. A lack of correlation between control signals and axonal signals revealed by DNQX and APV supports the hypothesis that responses in distal regions of the molecular layer were not dependent on perforant path axons. 4. The perforant path was cut by producing a lesion in the outer two-thirds of the molecular layer. Both dye fluorescence and microelectrode recording showed that stimulation on one side of the lesion could produce signals on the same side as well as across the lesion. The lesion did not block the spread of excitation through the molecular layer. Across the lesion from the site of stimulation, negative-going field potentials were observed to peak in the inner molecular layer, which is the major field of projection of hilar mossy cells. 5. Electrical stimulation in the hilus adjacent to the granule cell layer evoked dye fluorescence responses in the molecular layer. Stimulation at this site evoked negative-going field potentials that peaked in the inner molecular layer. These signals were sensitive to excitatory amino acid receptor antagonists but not to gamma-aminobutyric acid-A (GABAA) receptor antagonists. 6. Activation of excitatory amino acid receptors in the hilus by focal application of (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) elicited negative-going field potentials in the granule cell layer and depolarization of granule cells. Field potentials were blocked by tetrodotoxin (TTX), indicating that they were not caused by direct activation of receptors on granule cells, but rather by synapses from hilar neurons on granule cells. 7. These results taken together with previous studies of hilar mossy cells suggest a fundamental circuit consisting of granule cells exciting hilar mossy cells, which then excite more granule cells. This circuit provides positive feedback and can be considered a form of "recurrent excitation" unique to the dentate gyrus. The robustness of this circuit in hippocampal slices under control conditions suggest that mossy cell excitation of granule cells could play an important role in the normal activity of the hippocampus, and, when inhibition is compromised, this circuit could contribute to the generation and spread of seizures.

1998 ◽  
Vol 79 (1) ◽  
pp. 496-499 ◽  
Author(s):  
Elhoucine Messaoudi ◽  
Kjetil Bårdsen ◽  
Bolek Srebro ◽  
Clive R. Bramham

Messaoudi, Elhoucine, Kjetil Bårdsen, Bolek Srebro, and Clive R. Bramham. Acute intrahippocampal infusion of BDNF induces lasting potentiation of synaptic transmission in the rat dentategyrus. J. Neurophysiol. 79: 496–499, 1998. The effect of acuteintrahippocampal infusion of brain-derived neurotrophic factor (BDNF) on synaptic transmission in the dentate gyrus was investigated in urethan-anesthetized rats. Medial perforant path-evoked field potentials were recorded in the dentate hilus and BDNF-containing buffer was infused (4 μl, 25 min) immediately above the dentate molecular layer. BDNF led to a slowly developing increase of the field excitatory postsynaptic potential (fEPSP) slope and population spike amplitude. The potentiation either reached a plateau level at ∼2 h after BDNF infusion or continued to increase for the duration of experiment; the longest time point recorded was 10 h. Mean increases at 4 h after BDNF infusion were 62.2 and 224% for the fEPSP slope and population spike, respectively. No changes in responses were observed in controls receiving buffer medium only or buffer containing cytochrome C. BDNF-induced potentiation developed in the absence of epileptiform activity in the hippocampal electroencephalogram or changes in recurrent inhibition on granule cells as assessed by paired-pulse inhibition of the population spike. We conclude that exogenous BDNF induces a lasting potentiation of synaptic efficacy in the dentate gyrus of anesthetized adult rats.


2020 ◽  
Author(s):  
Hannah L. Bernstein ◽  
Yi-Ling Lu ◽  
Justin J. Botterill ◽  
Áine M. Duffy ◽  
John J. LaFrancois ◽  
...  

ABSTRACTGlutamatergic dentate gyrus (DG) mossy cells (MCs) innervate the primary cell type, granule cells (GCs), and GABAergic neurons which inhibit GCs. Prior studies suggest that the net effect of MCs is mainly to inhibit GCs, leading one to question why direct excitation of GCs is often missed. We hypothesized that MCs do have excitatory effects, but each GC is only excited weakly, at least under most experimental conditions. To address this hypothesis, MC axons were stimulated optogenetically in slices. A brief optogenetic stimulus to MC axons in the inner molecular layer (IML) led to a short-latency field EPSP (fEPSP) in the IML, suggesting there was a direct excitatory effect on GCs. Population spikes were negligible however, consistent with weak excitation. FEPSPs reflected AMPA/NMDA receptor-mediated EPSPs in GCs. EPSPs reached threshold after GC depolarization or facilitating NMDA receptors. GABAA and GABAB receptor-mediated IPSPs often followed EPSPs. At the network level, an optogenetic stimulus led to a brief, small facilitation of the PP-evoked population spike followed by a longer, greater inhibition. These data are consistent with rapid and selective GC firing by MCs (MC → GC) and disynaptic inhibition (MC → GABAergic neuron → GC). Notably, optogenetic excitation was evoked for both dorsal and ventral MCs, ipsilateral and contralateral MC axons, and two Cre lines. Together the results suggest a way to reconcile past studies and provide new insight into the balance of excitation and inhibition of GCs by MCs.SIGNIFICANCE STATEMENTMossy cells (MCs) of the dentate gyrus (DG) are glutamatergic and innervate granule cells (GCs). The net effect of MCs has been debated because MCs also innervate GABAergic neurons which inhibit GCs. The results shown here suggest that MCs excite numerous GCs, but excitation is weak at GC resting potentials, and requires specific conditions to trigger GC APs. The results are consistent with a GC network that is designed for selective activation.


1992 ◽  
Vol 68 (3) ◽  
pp. 978-984 ◽  
Author(s):  
H. E. Scharfman

1. Extracellular and intracellular recordings in rat hippocampal slices were used to compare the synaptic responses to perforant path stimulation of granule cells of the dentate gyrus, spiny “mossy” cells of the hilus, and area CA3c pyramidal cells of hippocampus. Specifically, we asked whether aspects of the local circuitry could explain the relative vulnerability of spiny hilar neurons to various insults to the hippocampus. 2. Spiny hilar cells demonstrated a surprising lack of inhibition after perforant path activation, despite robust paired-pulse inhibition and inhibitory postsynaptic potentials (IPSPs) in adjacent granule cells and area CA3c pyramidal cells in response to the same stimulus in the same slice. However, when the slice was perfused with excitatory amino acid antagonists [6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), or CNQX with 2-amino-5-phosphonovaleric acid (APV)], IPSPs could be observed in spiny hilar cells in response to perforant path stimulation. 3. The IPSPs evoked in spiny hilar cells in the presence of CNQX were similar in their reversal potentials and bicuculline sensitivity to IPSPs recorded in dentate granule cells or hippocampal pyramidal cells in the absence of CNQX. 4. These results demonstrate that, at least in slices, perforant path stimulation of spiny hilar cells is primarily excitatory and, when excitation is blocked, underlying inhibition can be revealed. This contrasts to the situation for dentate and hippocampal principal cells, which are ordinarily dominated by inhibition, and only when inhibition is compromised can the full extent of excitation be appreciated.(ABSTRACT TRUNCATED AT 250 WORDS)


1975 ◽  
Vol 38 (1) ◽  
pp. 167-184 ◽  
Author(s):  
S. A. Deadwyler ◽  
J. R. West ◽  
C. W. Cotman ◽  
G. S. Lynch

The electrophysiological properties of the commissural projections to the dentate gyrus of the rat were investigated using extracellular field-potential and unit-recording techniques. The following conclusions with respect to those investigations were obtained: 1) The CA3c/CA4 region of the contralateral hippocampus proved to be the most effective site for eliciting the commissural field potentials in the dentate gyrus dorsal and ventral leaves. 2) The location of the short-latency negative field potential in the molecular layer of the dentate gyrus was restricted to a region 50-100 mum distal to the granule cell layers corresponding to the inner one-third of the granule cell dendrites. 3) The negative field potential proved to satisfy a number of criteria for the extracellular representation of the summed EPSPs of synchronously activated granule cells. 4) The excitatory nature of the commissural projections to the dentate was confirmed by the short-latency driving of units recorded from the granule cell layers. 5) A comparison of both commissural and entorhinal cortical stimulation procedures showed the field potentials elicited by the different convergent anatomical systems to be localized within different regions of the dentate molecular layer. 6) The distribution of commissural potentials along the septotemporal axis of the dentate gyrus indicated that stimulation sites homotopic to the recording electrode in the contralateral CA3c/CA4 region were the most effective in eliciting these potentials. 7) These findings were discussed with reference to the mode of activation of the dentate granule cells by the commissural system with specific comparison to the larger and apparently more powerful projections from the entorhinal cortex.


2002 ◽  
Vol 88 (6) ◽  
pp. 3078-3086 ◽  
Author(s):  
Michael V. Baratta ◽  
Tyra Lamp ◽  
Melanie K. Tallent

The selective loss of somatostatin (SST)-containing interneurons from the hilus of the dentate gyrus is a hallmark of epileptic hippocampus. The functional consequence of this loss, including its contribution to postseizure hyperexcitability, remains unclear. We address this issue by characterizing the actions of SST in mouse dentate gyrus using electrophysiological techniques. Although the majority of dentate SST receptors are located in the outer molecular layer adjacent to lateral perforant path (LPP) synapses, we found no consistent action of SST on standard synaptic responses generated at these synapses. However, when SST was present during application of high-frequency trains that normally generate long-term potentiation (LTP), the induction of LTP was impaired. SST did not alter the maintenance of LTP when applied after its induction. To examine the mechanism by which SST inhibits LTP, we recorded from dentate granule cells and examined the actions of this neuropeptide on synaptic transmission and postsynaptic currents. Unlike findings in the CA1 hippocampus, we observed no postsynaptic actions on K+ currents. Instead, SST inhibited Ca2+/Ba2+ spikes evoked by depolarization. This inhibition was dependent on N-type Ca2+currents. Blocking these currents also blocked LTP, suggesting a mechanism through which SST may inhibit LTP. Our results indicate that SST reduction of dendritic Ca2+ through N-type Ca2+ channels may contribute to modulation of synaptic plasticity at LPP synapses. Therefore the loss of SST function postseizure could result in abnormal synaptic potentiation that contributes to epileptogenesis.


Author(s):  
K. Cullen-Dockstader ◽  
E. Fifkova

Normal aging results in a pronounced spatial memory deficit associated with a rapid decay of long-term potentiation at the synapses between the perforant path and spines in the medial and distal thirds of the dentate molecular layer (DML), suggesting the alteration of synaptic transmission in the dentate fascia. While the number of dentate granule cells remains unchanged, and there are no obvious pathological changes in these cells associated with increasing age, the density of their axospinous contacts has been shown to decrease. There are indications that the presynaptic element is affected by senescence before the postsynaptic element, yet little attention has been given to the fine structure of the remaining axon terminals. Therefore, we studied the axon terminals of the perforant path in the DML across three age groups.5 Male rats (Fischer 344) of each age group (3, 24 and 30 months), were perfused through the aorta.


1998 ◽  
Vol 80 (1) ◽  
pp. 113-119 ◽  
Author(s):  
David N. Lieberman ◽  
Istvan Mody

Lieberman, David N. and Istvan Mody. Substance P enhances NMDA channel function in hippocampal dentate gyrus granule cells. J. Neurophysiol. 80: 113–119, 1998. Substance P (SP)–containing afferents and the NK-1 tachykinin receptor to which SP binds are present in the dentate gyrus of the rat; however, direct actions of SP on principal cells have not been demonstrated in this brain region. We have examined the effect of SP on N-methyl-d-aspartate (NMDA) channels from acutely isolated dentate gyrus granule cells of adult rat hippocampus to assess the ability of SP to regulate glutamatergic input. SP produces a robust enhancement of single NMDA channel function that is mimicked by the NK-1–selective agonist Sar9, Met(O2)11-SP. The SP-induced prolongation of NMDA channel openings is prevented by the selective NK-1 receptor antagonist (+)-(2 S,3 S)-3-(2-methoxybenzylamino)-2-phenylpiperidine (CP-99,994). Calcium influx or activation of protein kinase C were not required for the SP-induced increase in NMDA channel open durations. The dramatic enhancement of excitatory amino acid–mediated excitability by SP places this neuropeptide in a key position to gate activation of hippocampal network activity.


1999 ◽  
Vol 81 (2) ◽  
pp. 564-574 ◽  
Author(s):  
Ümit Sayin ◽  
Paul Rutecki ◽  
Thomas Sutula

NMDA-dependent currents in granule cells of the dentate gyrus contribute to induction but not permanence of kindling. Single-electrode voltage-clamp techniques and bath application of the N-methyl-d-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovaleric acid (APV) were used to study the time course of seizure-induced alterations in NMDA-dependent synaptic currents in granule cells of the dentate gyrus in hippocampal slices from kindled and normal rats. In agreement with previous studies, granule cells from kindled rats examined within 1 wk after the last of 3 or 30–35 generalized tonic-clonic (class V) seizures demonstrated an increase in the NMDA receptor–dependent component of the perforant path–evoked synaptic current. Within 1 wk of the last kindled seizure, NMDA-dependent charge transfer underlying the perforant path–evoked current was increased by 63–111% at a holding potential of −30 mV. In contrast, the NMDA-dependent component of the perforant-evoked current in granule cells examined at 2.5–3 mo after the last of 3 or 90–120 class V seizures did not differ from age-matched controls. Because the seizure-induced increases in NMDA-dependent synaptic currents declined toward control values during a time course of 2.5–3 mo, increases in NMDA-dependent synaptic transmission cannot account for the permanent susceptibility to evoked and spontaneous seizures induced by kindling. The increase in NMDA receptor–dependent transmission was associated with the induction of kindling but was not responsible for the maintenance of the kindled state. The time course of alterations in NMDA-dependent synaptic current and the dependence of the progression of kindling and kindling-induced mossy fiber sprouting on repeated NMDA receptor activation are consistent with the possibility that the NMDA receptor is part of a transmembrane signaling pathway that induces long-term cellular alterations and circuit remodeling in response to repeated seizures, but is not required for permanent seizure susceptibility in circuitry altered by kindling.


Sign in / Sign up

Export Citation Format

Share Document