dentate granule cells
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 46)

H-INDEX

57
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Alma Rodenas-Ruano ◽  
Kaoutsar Nasrallah ◽  
Stefano Lutzu ◽  
Maryann Castillo ◽  
Pablo E. Castillo

The dentate gyrus is a key relay station that controls information transfer from the entorhinal cortex to the hippocampus proper. This process heavily relies on dendritic integration by dentate granule cells (GCs) of excitatory synaptic inputs from medial and lateral entorhinal cortex via medial and lateral perforant paths (MPP and LPP, respectively). N-methyl-D-aspartate receptors (NMDARs) can contribute significantly to the integrative properties of neurons. While early studies reported that excitatory inputs from entorhinal cortex onto GCs can undergo activity-dependent long-term plasticity of NMDAR-mediated transmission, the input-specificity of this plasticity along the dendritic axis remains unknown. Here, we examined the NMDAR plasticity rules at MPP-GC and LPP-GC synapses using physiologically relevant patterns of stimulation in acute rat hippocampal slices. We found that MPP-GC, but not LPP-GC synapses, expressed homosynaptic NMDAR-LTP. In addition, induction of NMDAR-LTP at MPP-GC synapses heterosynaptically potentiated distal LPP-GC NMDAR plasticity. The same stimulation protocol induced homosynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-LTP at MPP-GC but heterosynaptic AMPAR-LTD at distal LPP synapses, demonstrating that NMDAR and AMPAR are governed by different plasticity rules. Remarkably, heterosynaptic but not homosynaptic NMDAR-LTP required Ca2+ release from intracellular, ryanodine-dependent Ca2+ stores. Lastly, the induction and maintenance of both homo- and heterosynaptic NMDAR-LTP were blocked by GluN2D antagonism, suggesting the recruitment of GluN2D-containing receptors to the synapse. Our findings uncover a mechanism by which distinct inputs to the dentate gyrus may interact functionally and contribute to hippocampal-dependent memory formation.


2021 ◽  
Author(s):  
Xiao-Hong Su ◽  
Wei-Peng Li ◽  
Yi-Jie Wang ◽  
Jia Liu ◽  
Jun-Yu Liu ◽  
...  

AbstractDepression is a common but serious mental disorder and can be caused by the side effects of medications. Evidence from abundant clinical case reports and experimental animal models has revealed the association between the classic anti-acne drug 13-cis-retinoic acid (13-cis-RA) and depressive symptoms. However, direct experimental evidence of this mechanism and information on appropriate therapeutic rescue strategies are lacking. Herein, our data revealed that chronic administration of 13-cis-RA to adolescent mice induced depression-like behavior but not anxiety-like behavior. We next demonstrated that chronic 13-cis-RA application increased neural activity in the dentate gyrus (DG) using c-Fos immunostaining, which may be critically involved in some aspects of depression-like behavior. Therefore, we assessed electrophysiological functions by obtaining whole-cell patch-clamp recordings of dentate granule cells (DGCs), which revealed that chronic 13-cis-RA treatment shifted the excitatory-inhibitory balance toward excitation and increased intrinsic excitability. Furthermore, a pharmacogenetic approach was performed to repeatedly silence DGCs, and this manipulation could rescue depression-like behavior in chronically 13-cis-RA-treated mice, suggesting DGCs as a potential cellular target for the direct alleviation of 13-cis-RA-induced depression.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3232
Author(s):  
Dimitrios Kleidonas ◽  
Andreas Vlachos

Neurons that lose part of their afferent input remodel their synaptic connections. While cellular and molecular mechanisms of denervation-induced changes in excitatory neurotransmission have been identified, little is known about the signaling pathways that control inhibition in denervated networks. In this study, we used mouse entorhino-hippocampal tissue cultures of both sexes to study the role of the pro-inflammatory cytokine tumor necrosis factor α (TNFα) in denervation-induced plasticity of inhibitory neurotransmission. In line with our previous findings in vitro, an entorhinal cortex lesion triggered a compensatory increase in the excitatory synaptic strength of partially denervated dentate granule cells. Inhibitory synaptic strength was not changed 3 days after the lesion. These functional changes were accompanied by a recruitment of microglia in the denervated hippocampus, and experiments in tissue cultures prepared from TNF-reporter mice [C57BL/6-Tg(TNFa-eGFP)] showed increased TNFα expression in the denervated zone. However, inhibitory neurotransmission was not affected by scavenging TNFα with a soluble TNF receptor. In turn, a decrease in inhibition, i.e., decreased frequencies of miniature inhibitory postsynaptic currents, was observed in denervated dentate granule cells of microglia-depleted tissue cultures. We conclude from these results that activated microglia maintain the inhibition of denervated dentate granule cells and that TNFα is not required for the maintenance of inhibition after denervation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maximilian Lenz ◽  
Amelie Eichler ◽  
Pia Kruse ◽  
Julia Muellerleile ◽  
Thomas Deller ◽  
...  

Previously we showed that the vitamin A metabolite all-trans retinoic acid (atRA) induces synaptic plasticity in acute brain slices prepared from the mouse and human neocortex (Lenz et al., 2021). Depending on the brain region studied, distinct effects of atRA on excitatory and inhibitory neurotransmission have been reported. Here, we used intraperitoneal injections of atRA (10 mg/kg) in adult C57BL/6J mice to study the effects of atRA on excitatory and inhibitory neurotransmission in the mouse fascia dentata—a brain region implicated in memory acquisition. No major changes in synaptic transmission were observed in the ventral hippocampus while a significant increase in both spontaneous excitatory postsynaptic current frequencies and synapse numbers were evident in the dorsal hippocampus 6 hr after atRA administration. The intrinsic properties of hippocampal dentate granule cells were not significantly different and hippocampal transcriptome analysis revealed no essential neuronal changes upon atRA treatment. In light of these findings, we tested for the metaplastic effects of atRA, that is, for its ability to modulate synaptic plasticity expression in the absence of major changes in baseline synaptic strength. Indeed, in vivo long-term potentiation (LTP) experiments demonstrated that systemic atRA treatment improves the ability of dentate granule cells to express LTP. The plasticity-promoting effects of atRA were not observed in synaptopodin-deficient mice, therefore, extending our previous results regarding the relevance of synaptopodin in atRA-mediated synaptic strengthening in the mouse prefrontal cortex. Taken together, our data show that atRA mediates synaptopodin-dependent metaplasticity in mouse dentate granule cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jia Shen ◽  
Pan-Tong Yao ◽  
Shaoyu Ge ◽  
Qiaojie Xiong

AbstractAuditory-cued goal-oriented behaviors requires the participation of cortical and subcortical brain areas, but how neural circuits associate sensory-based decisions with goal locations through learning remains poorly understood. The hippocampus is critical for spatial coding, suggesting its possible involvement in transforming sensory inputs to the goal-oriented decisions. Here, we developed an auditory discrimination task in which rats learned to navigate to goal locations based on the frequencies of auditory stimuli. Using in vivo calcium imaging in freely behaving rats over the course of learning, we found that dentate granule cells became more active, spatially tuned, and responsive to task-related variables as learning progressed. Furthermore, only after task learning, the activity of dentate granule cell ensembles represented the navigation path and predicts auditory decisions as early as when rats began to approach the goals. Finally, chemogenetic silencing of dentate gyrus suppressed task learning. Our results demonstrate that dentate granule cells gain task-relevant firing pattern through reinforcement learning and could be a potential link of sensory decisions to spatial navigation.


Author(s):  
Kyung-Ran Kim ◽  
Hyeon-Ju Jeong ◽  
Yoonsub Kim ◽  
Seung Yeon Lee ◽  
Yujin Kim ◽  
...  

AbstractCalbindin, a major Ca2+ buffer in dentate granule cells (GCs), plays a critical role in shaping Ca2+ signals, yet how it regulates neuronal function remains largely unknown. Here, we found that calbindin knockout (CBKO) mice exhibited dentate GC hyperexcitability and impaired pattern separation, which co-occurred with reduced K+ current due to downregulated surface expression of Kv4.1. Relatedly, manipulation of calbindin expression in HT22 cells led to changes in CaMKII activation and the level of surface localization of Kv4.1 through phosphorylation at serine 555, confirming the mechanism underlying neuronal hyperexcitability in CBKO mice. We also discovered that Ca2+ buffering capacity was significantly reduced in the GCs of Tg2576 mice to the level of CBKO GCs, and this reduction was restored to normal levels by antioxidants, suggesting that calbindin is a target of oxidative stress. Our data suggest that the regulation of CaMKII signaling by Ca2+ buffering is crucial for neuronal excitability regulation.


2021 ◽  
Author(s):  
Maximilian Lenz ◽  
Amelie Eichler ◽  
Pia Kruse ◽  
Julia Muellerleile ◽  
Thomas Deller ◽  
...  

The vitamin A derivative all-trans retinoic acid (atRA) is a key mediator of synaptic plasticity. Depending on the brain region studied, distinct effects of atRA on excitatory and inhibitory neurotransmission have been reported. However, it remains unclear how atRA mediates brain region-specific effects on synaptic transmission and plasticity. Here, we used intraperitoneal injections of atRA (10 mg/kg) in adult male C57BL/6J mice to study the effects of atRA on excitatory and inhibitory neurotransmission in the mouse fascia dentata. In contrast to what has been reported in other brain regions, no major changes in synaptic transmission were observed in the ventral and dorsal hippocampus 6 hours after atRA administration. Likewise, no evidence for changes in the intrinsic properties of hippocampal dentate granule cells was obtained in the atRA-treated group. Moreover, hippocampal transcriptome analysis revealed no essential changes upon atRA treatment. In light of these findings, we tested for the metaplastic effects of atRA, i.e., for its ability to modulate synaptic plasticity expression in the absence of major changes in baseline synaptic transmission. Indeed, in vivo long-term potentiation (LTP) experiments demonstrated that systemic atRA treatment improves the ability of dentate granule cells to express LTP. The plasticity-promoting effects of atRA were not observed in synaptopodin-deficient mice, thus extending our previous results on the relevance of synaptopodin in atRA-mediated synaptic strengthening in the mouse prefrontal cortex. Taken together, our data show that atRA mediates synaptopodin-dependent metaplasticity in mouse dentate granule cells.


Sign in / Sign up

Export Citation Format

Share Document