Visual receptive field properties in kitten pretectal nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract

1993 ◽  
Vol 70 (2) ◽  
pp. 814-827 ◽  
Author(s):  
C. Distler ◽  
K. P. Hoffmann

1. Neurons in the pretectal nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic tract (DTN) were recorded in anesthetized and paralyzed kittens on postnatal days 18 to 48 (P18-P48) as well as in adult cats. 2. Spontaneous as well as stimulus driven discharge rates of NOT-DTN neurons in the youngest kittens (P18-P23) are significantly lower than in older kittens (P27-P33) or adult cats. 3. Visual latencies of NOT-DTN neurons in P18-P23 kittens are significantly longer than in P27-P33 kittens. They further decrease as the animals reach adulthood. 4. Already in the youngest animals recorded in this experimental series (P18) NOT-DTN neurons were selective for ipsiversive horizontal stimulus movement. When expressed as the difference between response strength during stimulation in the preferred and the nonpreferred direction, P18-P23 NOT-DTN neurons are less direction selective than NOT-DTN cells in older animals. However, the normalized directional tuning expressed as percent change in discharge rate per degree change in stimulus direction away from the preferred direction (where discharge rate is set 100%) is about equal in all age groups. 5. NOT-DTN neurons in P18-P23 kittens respond to a rather limited range of stimulus speeds with an optimum at approximately 10 degrees/s. In P27-P33 kittens, NOT-DTN neurons increase their responsive range to higher stimulus speeds. As the animals approach adulthood, the range of effective stimulus speeds further broadens to include very low ones. 6. In P18-P23 kittens, the majority of NOT-DTN neurons is exclusively activated by the contralateral eye; only a few neurons receive an additional input from the ipsilateral eye. In P27-P48 kittens, the influence of the ipsilateral eye has significantly increased but with the majority of NOT-DTN cells still being dominated by the contralateral eye. Finally, in adults, a further strengthening of the ipsilateral input leads to a more binocularly balanced input to NOT-DTN cells. 7. Electrical stimulation in areas 17 and 18 did not elicit orthodromic action potentials in NOT-DTN neurons before P27. Thus the cortical input to the NOT-DTN in kittens becomes functional only at 4 wk of age. 8. In conclusion, the significant changes of visual response properties of NOT-DTN neurons coincide with the time when the cortical input to the NOT-DTN becomes functional.(ABSTRACT TRUNCATED AT 400 WORDS)

1996 ◽  
Vol 75 (4) ◽  
pp. 1483-1494 ◽  
Author(s):  
C. Distler ◽  
K. P. Hoffmann

1. Visual response properties of neurons in the nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic tract (DTN) were electrophysiologically investigated in five congenitally strabismic cats and compared with normal adult cats and 3- to 4-wk-old kittens. 2. As in normal cats, NOT-DTN cells of strabismic cats preferred horizontal ipsiversive stimulus movement. However, NOT-DTN neurons in strabismic cats altered their activity to a lesser amount per degree change of stimulus direction than do normal adult cats. In addition, NOT-DTN cells in strabismic cats exhibited a broader directional tuning, i.e., they increase their activity to a broader range of directions than control NOT-DTN cells. 3. Spontaneous activity and activity difference between preferred and nonpreferred direction were significantly lower in NOT-DTN neurons of strabismic cats than in normal adult cats and resembled that found in 3-wk-old kittens. Maximal stimulus-related activity was lower than in normal adult cats but higher than in kittens. 4. Visual latencies to onset of movement in the preferred direction were indistinguishable in strabismic and in normal adult cats. Visual latencies to onset of movement in the nonpreferred direction, however, were shorter in strabismic cats than in normal adult cats. 5. The average velocity tuning curve of NOT-DTN cells in strabismic cats was very flat without a well-defined optimal stimulus velocity. Thus it closely resembled data from 3-wk-old kittens. 6. Binocular convergence was significantly altered to a stronger dominance of the contralateral eye in NOT-DTN of strabismic cats. This reduction of binocular neurons was less pronounced than in cats with artificially induced strabismus or in 3-wk-old kittens. 7. In conclusion, the data presented here for retinal slip neurons in the NOT-DTN of strabismic cats closely resemble those from 3-wk-old kittens where no functional cortical input to the NOT-DTN is present. However, the elevated stimulus-driven activity and the still relatively high degree of binocularity give a clear indication of a functional, albeit weak and abnormal, cortical input to the NOT-DTN in these naturally strabismic cats.


2000 ◽  
Vol 84 (5) ◽  
pp. 2529-2540 ◽  
Author(s):  
Douglas R. W. Wylie ◽  
Nathan A. Crowder

Neurons in the pretectal nucleus lentiformis mesencephali (LM) are involved in the analysis of optic flow that results from self-motion. Previous studies have shown that LM neurons have large receptive fields in the contralateral eye, are excited in response to largefield stimuli moving in a particular (preferred) direction, and are inhibited in response to motion in the opposite (anti-preferred) direction. We investigated the responses of LM neurons to sine wave gratings of varying spatial and temporal frequency drifting in the preferred and anti-preferred directions. The LM neurons fell into two categories. “Fast” neurons were maximally excited by gratings of low spatial [0.03–0.25 cycles/° (cpd)] and mid-high temporal frequencies (0.5–16 Hz). “Slow” neurons were maximally excited by gratings of high spatial (0.35–2 cpd) and low-mid temporal frequencies (0.125–2 Hz). Of the slow neurons, all but one preferred forward (temporal to nasal) motion. The fast group included neurons that preferred forward, backward, upward, and downward motion. For most cells (81%), the spatial and temporal frequency that elicited maximal excitation to motion in the preferred direction did not coincide with the spatial and temporal frequency that elicited maximal inhibition to gratings moving in the anti-preferred direction. With respect to motion in the anti-preferred direction, a substantial proportion of the LM neurons (32%) showed bi-directional responses. That is, the spatiotemporal plots contained domains of excitation in addition to the region of inhibition. Neurons tuned to stimulus velocity across different spatial frequency were rare (5%), but some neurons (39%) were tuned to temporal frequency. These results are discussed in relation to previous studies of the responses of neurons in the accessory optic system and pretectum to drifting gratings and other largefield stimuli.


2002 ◽  
Vol 88 (5) ◽  
pp. 2224-2231 ◽  
Author(s):  
Nicholas S. C. Price ◽  
Michael R. Ibbotson

We describe the responses during and after motion of slow cells, which are a class of direction-selective neurons in the pretectal nucleus of the optic tract (NOT) of the wallaby. Neurons in the NOT respond to optic flow generated by head movements and drive compensatory optokinetic eye movements. Motion in the preferred direction produces increased firing rates in the cells, whereas motion in the opposite direction inhibits their high spontaneous activities. Neurons were stimulated with moving spatial sinusoidal gratings through a range of temporal and spatial frequencies. The slow cells were maximally stimulated at temporal frequencies <1 Hz and spatial frequencies of 0.13–1 cpd. During motion, the responses oscillate at the fundamental temporal frequency of the grating but not at higher-order harmonics. There is prolonged excitation after preferred direction motion and prolonged inhibition after anti-preferred direction motion, which are referred to as same-sign after-responses (SSARs). This is the first time that the response properties of neurons with SSARs have been reported and modeled in detail for neurons in the NOT. Slow cell responses during and after motion are modeled using an array of Reichardt-type motion detectors that include band-pass temporal prefilters. The oscillatory behavior during motion and the SSARs can be simulated accurately with the model by manipulating time constants associated with temporal filtering in the prefilters and motion detectors. The SSARs of slow cells are compared with those of previously described direction-selective neurons, which usually show transient inhibition or excitation after preferred or anti-preferred direction motion, respectively. Possible functional roles for slow cells are discussed in the context of eye movement control.


1993 ◽  
Vol 69 (4) ◽  
pp. 1314-1322 ◽  
Author(s):  
T. X. Fan ◽  
A. F. Rosenberg ◽  
M. Ariel

1. Single units were recorded extracellularly in the turtle's cerebellar cortex from an isolated brain preparation during visual stimulation. Only a small fraction of the isolated units responded to visual stimuli. For these visually responsive units, the most effective visual stimulus was a moving check pattern that covered the entire surface of the retinal eyecup. The visually responsive units had little or no spontaneous spike activity, nor were they driven by flashes of diffuse light or stationary patterns. 2. All the visually responsive units were direction sensitive and were driven exclusively by the contralateral eye. This direction tuning was well fit by a limacon model (mean correlation coefficient, 0.89). The distribution of the entire sample indicates a slight preponderance of upward preferred directions. 3. The direction tuning of these cerebellar units was independent of stimulus contrast or the pattern's configuration (such as checkerboards or random check or dot patterns). In the preferred direction, a unit's spike frequency increased monotonically as a function of stimulus velocity until approximately 10 degrees/s, but remained direction sensitive (relative to the opposite direction) at speeds as fast as 100 degrees/s. 4. In some experiments the ventrocaudal brain stem was transected in the frontal plane just caudal to the cerebellar peduncles. Although this lesion presumably removes climbing fiber input from the inferior olivary nuclei, the visual-response properties in the cerebellar cortex were unaffected. 5. The response properties of these units indicate that they encode retinal slip information in the cerebellum.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 63 (5) ◽  
pp. 1033-1045 ◽  
Author(s):  
A. F. Rosenberg ◽  
M. Ariel

1. The spike responses of 105 cells to visual-stimulus movement were analyzed in the turtle's basal optic nucleus (BON) in vitro in the absence of the telencephalon. All cells were direction sensitive (DS) and were driven solely by stimulation of the contralateral eye. These cells had large receptive fields and had vigorous responses to moving, textured patterns. Small moving spots generated only weak responses from these cells, as did the onset or offset of diffuse light flashes. 2. The direction tuning of BON cells was quite broad with most back and forth responses being DS. In fact, for 86% of the cells, there were seven to nine axes (out of 9 total, in 20 degrees increments) for which response to movement in one direction was at least twice that for the opposite direction. In instances where spontaneous activity was relatively high, a suppression of that spike firing was evident when the stimulus moved in directions opposite to preferred stimulus directions. 3. Cells preferring many different directions are found in the BON. More cells preferred inferior-temporal directed motion (49%), compared to superior-temporal (35%) and nasal stimuli (13%). 4. BON cells remained DS over 3 log units of velocity, with their strongest responses between 1 and 50 degrees/s. Responses were often non-DS for stimuli moving slower than 0.1 degrees/s. 5. The receptive fields of BON cells were large and occupied different parts of the retina. When different subregions of a receptive field were stimulated, the cell's directional tuning always remained the same as the full field direction tuning. 6. Thus, BON cells seem well-suited for the analysis of global, visual-field motion in any direction, performed by the accessory optic system. Other brain stem pathways necessary for optokinetic reflexes can be elucidated with the use of this whole-brain, eyes-attached in vitro preparation.


1989 ◽  
Vol 62 (2) ◽  
pp. 416-428 ◽  
Author(s):  
K. P. Hoffmann ◽  
C. Distler

1. The visual receptive field properties of neurons in the nucleus of the optic tract (NOT) in the pretectum and the dorsal terminal nucleus (DTN) of the accessory optic tract were analyzed quantitatively in anesthetized, paralyzed macaque monkeys. 2. Visual latencies to reversals in direction of stimulus movement ranged from 40 to 80 ms [61 +/- 13.5 (SD) ms]. 3. All neurons increased their discharge rate during ipsiversive movement and decreased their ongoing activity during contraversive movement of single stimuli or whole-field random dot patterns. The population of neurons in the left NOT-DTN was excited most strongly by leftward movement pointing 4 degrees down; neurons in the right NOT-DTN were excited most strongly by rightward movement pointing 6 degrees down. The mean angle between the directions yielding the highest and the lowest discharge rate in the two populations of NOT-DTN neurons was 177 degrees. 4. The deviation of the preferred excitatory directions from the horizon in individual neurons varied with recording depth. Within the first 500 microns below the midbrain surface, neurons preferred near-horizontal directions, whereas neurons recorded more deeply preferred more oblique directions of stimulus movement. 5. The tuning widths of NOT-DTN neurons in the preferred excitatory direction were very broad. The mean halfwidth defined as the range of directions eliciting responses greater than 50% of the maximum was 127 +/- 25 degrees. 6. Moving a random dot pattern and a single bar of light simultaneously but in opposite directions caused NOT-DTN neurons to increase their discharge rate as soon as one of the two stimuli moved in the ipsiversive direction. The reduction in overall discharge rates when two stimuli moved in opposite directions indicates mainly inhibitory interactions. 7. All NOT-DTN neurons could be activated from both eyes. Interactions between the two eyes were modest and unspecific. Misalignment of the visual axes of the two eyes had no influence on response strength. 8. Optimal speeds of stimulus movement varied widely for different NOT-DTN neurons. The effective range of speeds to elicit direction-selective responses in the total population was very broad (0.1400 degrees/s. With oscillating horizontal stimulation, NOT-DTN neurons followed repetition rates up to 4 Hz at excursions of 40 degrees. Speeds greater than 500 degrees/s were either not effective or resulted in a suppression of ongoing activity in all directions of movement.(ABSTRACT TRUNCATED AT 400 WORDS)


1985 ◽  
Vol 54 (4) ◽  
pp. 867-886 ◽  
Author(s):  
S. E. Petersen ◽  
D. L. Robinson ◽  
W. Keys

We have examined the properties of neurons in three subdivisions of the pulvinar of alert, trained rhesus monkeys 1) an inferior, retinotopically mapped area (PI), 2) a lateral, retinotopically organized region (PL), and 3) a dorsomedial visual portion of the lateral pulvinar (Pdm), which has a crude retinotopic organization. We tested the neurons for visual responses to stationary and moving stimuli and for changes in these responses produced by behavioral manipulations. All areas contain cells sensitive to stimulus orientation as well as neurons selective for the direction of stimulus movement; however, the majority of cells in all three regions are either broadly tuned or nonselective for these attributes. Nearly all cells respond to stimulus onset, a significant number also give a response to stimulus termination, and rarely a cell gives only off responses. Nearly all cells increase their discharge rate to visual stimuli. Receptive fields in the two retinotopically mapped regions, PI and PL, have well-defined borders. The sizes of these receptive fields show a positive correlation with the eccentricity of the receptive fields. The receptive fields in the remaining region, Pdm, are frequently very large, but with these large fields excluded, show a similar correlation with eccentricity. All pulvinar cells tested (n = 20) were mapped in retinal coordinates; the receptive fields are positioned in relation to the retina. We found no cells with gaze-gated characteristics (2), nor cells mapped in a spatial coordinate system. The response latencies in PI and PL are shorter and less variable than the latencies in Pdm. Active use of a stimulus can produce an enhancement or attenuation of the visual response. Eye-movement modulation was found in all three subdivisions in about equal frequencies. Attentional modulation was common in Pdm and was rare in PI and PL. The modulation is spatially selective in Pdm and nonselective in PI for a small number of tested cells. These data demonstrate functional differences between Pdm and the other two areas and suggest that Pdm plays a role in selective visual attention, whereas PI and PL probably contribute to other aspects of visual perception.


1984 ◽  
Vol 52 (3) ◽  
pp. 488-513 ◽  
Author(s):  
D. J. Felleman ◽  
J. H. Kaas

Response properties of single neurons in the middle temporal visual area (MT) of anesthetized owl monkeys were determined and quantified for flashed and moving bars of light under computer control for position, orientation, direction of movement, and speed. Receptive-field sizes, ranging from 4 to 25 degrees in width, were considerably larger than receptive fields with corresponding eccentricities in the striate cortex. Neurons were highly binocular with most cells equally or nearly equally activated by either eye. Neurons varied in selectivity for axis and direction of moving bars. Some neurons demonstrated little or no selectivity, others were bidirectional on a single axis, while the largest group was highly selective for direction with little or no response to bar movement opposite to the preferred direction. Over 70% of neurons were classified as highly selective and 90% showed some preference for direction and/or axis of stimulus movement. Neurons typically responded to bar movement only over a restricted range of velocities. The majority of neurons responded best to a particular velocity within the 5-60 degrees/s range, with marked attenuation of the response for velocities greater or less than the preferred. Some neurons failed to show significant response attenuation even at the lowest tested velocity, while other neurons preferred velocities of 100 degrees/s or more and failed to attenuate to the highest velocities. Response magnitude varied with stimulus dimensions. Increasing the length of the moving bar typically increased the magnitude of the response slightly until the stimulus exceeded the receptive-field borders. Other neurons responded less to increases in bar length within the excitatory receptive field. Neurons preferred narrow bars less than 1 degree in width, and marked reductions in responses characteristically occurred with wider stimuli. Moving patterns of randomly placed small dots were often as effective as or more effective than single bars in activating neurons. Selectivity for direction of movement remained for the dot pattern. for the dot pattern. Poststimulus time (PST) histograms of responses to bars flashed at a series of 21 different positions across the receptive field, in the "response-plane" format, indicated a spatially and temporally homogeneous receptive-field structure for nearly all neurons. Cells characteristically showed transient excitation at both stimulus onset and offset for all effective stimulus locations. Some cells responded mainly at bright stimulus onset or offset.


1993 ◽  
Vol 10 (2) ◽  
pp. 313-324 ◽  
Author(s):  
Rafael Linden

AbstractDendrites of retinal ganglion cells (RGCs) tend to be distributed preferentially toward areas of reduced RGC density. This, however, does not occur in the retina of normal pigmented rats, in which it has been suggested that the centro-peripheral gradient of RGC density is too shallow to provide directional guidance to growing dendrites. In this study, laterally displaced dendrites of RGCs retrogradely labeled with horseradish peroxidase were related to cell density gradients induced experimentally in the rat retina. Neonatal unilateral lesions of the optic tract produced retrograde degeneration of contralaterally projecting RGCs, but spared ipsilaterally projecting neurons in the same retina. These lesions created an anomalous temporal to nasal gradient of cell density across the decussation line, opposite to the nasal to temporal gradient found along the same axis in either normal rats or rats that had the contralateral eye removed at birth. RGCs in rats that received optic tract lesions had their dendrites displaced laterally toward the depleted nasal retina, while in either normal or enucleated rats there was no naso-temporal asymmetry. The lateral displacement affected both primary dendrites and higher-order branches. However, the gradient of cell density after optic tract lesions was less steep than the gradient in either normal or enucleated rats. To test for the presence of steeper gradients at early stages of development, RGC density gradients were also examined at postnatal day 5 (P5). In normal rats, the RGCs were homogeneously distributed throughout the retina, while rats given optic tract lesions at birth already showed a temporo-nasal density gradient at P5. Still, this anomalous gradient was less steep than that found in normal adults. It is concluded that the time course, rather than the steepness of the RGC density gradient, is the major determinant of the lateral displacement of dendritic arbors with respect to the soma in developing RGCs. The data are consistent with the idea that the overall shape of dendritic arbors depends in part on dendritic competition during retinal development.


Sign in / Sign up

Export Citation Format

Share Document