dendritic arbors
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 30)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Beatrice Uguagliati ◽  
Fiorenza Stagni ◽  
Marco Emili ◽  
Andrea Giacomini ◽  
Carla Russo ◽  
...  

Down syndrome (DS), which is due to triplication of chromosome 21, is constantly associated with intellectual disability (ID). ID can be ascribed to both neurogenesis impairment and dendritic pathology. These defects are replicated in the Ts65Dn mouse, a widely used model of DS. While neurogenesis impairment in DS is a fetal event, dendritic pathology occurs after the first postnatal months. Neurogenesis alterations across the lifespan have been extensively studied in the Ts65Dn mouse. In contrast, there is scarce information regarding dendritic alterations at early life stages in this and other models, although there is evidence for dendritic alterations in adult mouse models. Thus, the goal of the current study was to establish whether dendritic alterations are already present in the neonatal period in Ts65Dn mice. In Golgi-stained brains we quantified the dendritic arbors of layer II/III pyramidal neurons in the frontal cortex of Ts65Dn mice aged 2 (P2) and 8 (P8) days and their euploid littermates. In P2 Ts65Dn mice we found a moderate hypotrophy of the apical and collateral dendrites but a patent hypotrophy of the basal dendrites. In P8 Ts65Dn mice the distalmost apical branches were missing or reduced in number but there were no alterations in the collateral and basal dendrites. No genotype effects were detected on either somatic or dendritic spine density. This study shows dendritic branching defects that mainly involve the basal domain in P2 Ts65Dn mice, and the apical but not the other domains in P8 Ts65Dn mice. This suggests that dendritic defects may be related to dendritic compartment and age. The lack of a severe dendritic pathology in Ts65Dn pups is reminiscent of the delayed appearance of patent dendritic alterations in newborns with DS. This similarly highlights the usefulness of the Ts65Dn model for the study of the mechanisms underlying dendritic alterations in DS and the design of possible therapeutic interventions.


2021 ◽  
Author(s):  
Kenneth H. Moberg ◽  
Edwin B. Corgiat ◽  
Sara List ◽  
J. Christopher Rounds ◽  
Dehong Yu ◽  
...  

RNA binding proteins support neurodevelopment by modulating numerous steps in post-transcriptional regulation, including splicing, export, translation, and turnover of mRNAs that can traffic into axons and dendrites. One such RBP is ZC3H14, which is lost in an inherited intellectual disability. The Drosophila melanogaster ZC3H14 ortholog, Nab2, localizes to neuronal nuclei and cytoplasmic ribonucleoprotein granules, and is required for olfactory memory and proper axon projection into brain mushroom bodies. Nab2 can act as a translational repressor in conjunction with the Fragile-X mental retardation protein homolog Fmr1 and shares target RNAs with the Fmr1-interacting RBP Ataxin-2. However, neuronal signaling pathways regulated by Nab2 and their potential roles outside of mushroom body axons remain undefined. Here, we demonstrate that Nab2 restricts branching and projection of larval sensory dendrites via the planar cell polarity pathway, and that this link may provide a conserved mechanism through which Nab2/ZC3H14 modulates projection of both axons and dendrites. Planar cell polarity proteins are enriched in a Nab2-regulated brain proteomic dataset. Complementary genetic data indicate that Nab2 guides dendrite and axon growth through the planar-cell-polarity pathway. Analysis of the core planar cell polarity protein Vang, which is depleted in the Nab2 mutant whole-brain proteome, uncovers selective and dramatic loss of Vang within axon/dendrite-enriched brain neuropil relative to brain regions containing cell bodies. Collectively, these data demonstrate that Nab2 regulates dendritic arbors and axon projection by a planar-cell-polarity-linked mechanism and identify Nab2 as required for accumulation of the core planar cell polarity factor Vang in distal neuronal projections.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Juan A. Godoy ◽  
Jasson Espinoza-Caicedo ◽  
Nibaldo C. Inestrosa

Abstract Background Wnt signaling plays key roles in cellular and physiological processes, including cell proliferation, differentiation and migration during development and tissue homeostasis in adults. This pathway can be defined as Wnt/β-catenin-dependent or β-catenin-independent or “non-canonical”, both signaling are involved in neurite and synapse development/maintenance. Porcupine (PORCN), an acylase that o-acylates Wnt ligands, a major modification in secretion and interaction with its receptors. We use Wnt-C59, a specific PORCN inhibitor, to block the secretion of endogenous Wnts in embryonic hippocampal neurons (DIV 4). Under these conditions, the activity of exogenous Wnt ligands on the complexity of the dendritic tree and axonal polarity were evaluated Methods Cultured primary embryonic hippocampal neurons obtained from Sprague–Dawley rat fetuses (E18), were cultured until day in vitro (DIV) 4 (according to Banker´s protocol) and treated with Wnt-C59 for 24 h, Wnt ligands were added to the cultures on DIV 3 for 24 h. Dendritic arbors and neurites were analysis by fluorescence microscopy. Transfection with Lipofectamine 2000 on DIV 2 of plasmid expressing eGFP and KIF5-Cherry was carried out to evaluate neuronal polarity. Immunostaining was performed with MAP1B and Tau protein. Immunoblot analysis was carried out with Wnt3a, β-catenin and GSK-3β (p-Ser9). Quantitative analysis of dendrite morphology was carried out with ImageJ (NIH) software with Neuron J Plugin. Results We report, here, that Wnt-C59 treatment changed the morphology of the dendritic arbors and neurites of embryonic hippocampal neurons, with decreases β-catenin and Wnt3a and an apparent increase in GSK-3β (p-Ser9) levels. No effect was observed on axonal polarity. In sister cultures, addition of exogenous Wnt3a, 5a and 7a ligands rescued the changes in neuronal morphology. Wnt3a restored the length of neurites to near that of the control, but Wnt7a increased the neurite length beyond that of the control. Wnt5a also restored the length of neurites relative to Wnt concentrations. Conclusions Results indicated that Wnt ligands, added exogenously, restored dendritic arbor complexity in embryonic hippocampal neurons, previously treated with a high affinity specific Porcupine inhibitor. We proposed that PORCN is an emerging molecular target of interest in the search for preclinical options to study and treat Wnt-related diseases.


2021 ◽  
Vol 15 ◽  
Author(s):  
Serene Dhawan ◽  
Philip Myers ◽  
David M. D. Bailey ◽  
Aaron D. Ostrovsky ◽  
Jan Felix Evers ◽  
...  

Neurons utilize plasticity of dendritic arbors as part of a larger suite of adaptive plasticity mechanisms. This explicitly manifests with motoneurons in the Drosophila embryo and larva, where dendritic arbors are exclusively postsynaptic and are used as homeostatic devices, compensating for changes in synaptic input through adapting their growth and connectivity. We recently identified reactive oxygen species (ROS) as novel plasticity signals instrumental in this form of dendritic adjustment. ROS correlate with levels of neuronal activity and negatively regulate dendritic arbor size. Here, we investigated NADPH oxidases as potential sources of such activity-regulated ROS and implicate Dual Oxidase (but not Nox), which generates hydrogen peroxide extracellularly. We further show that the aquaporins Bib and Drip, but not Prip, are required for activity-regulated ROS-mediated adjustments of dendritic arbor size in motoneurons. These results suggest a model whereby neuronal activity leads to activation of the NADPH oxidase Dual Oxidase, which generates hydrogen peroxide at the extracellular face; aquaporins might then act as conduits that are necessary for these extracellular ROS to be channeled back into the cell where they negatively regulate dendritic arbor size.


2021 ◽  
Author(s):  
Miloslav Sedlacek ◽  
William Grimes ◽  
Morgan Musgrove ◽  
Amurta Nath ◽  
Hua Tian ◽  
...  

In retinal neurons, morphology strongly influences visual response features. Ganglion cell (GC) dendrites ramify in distinct strata of the inner plexiform layer (IPL) so that GCs responding to light increments (ON) or decrements (OFF) receive appropriate excitatory inputs. This vertical stratification prescribes response polarity and ensures consistent connectivity between cell types, whereas the lateral extent of GC dendritic arbors typically dictates receptive field (RF) size. Here, we identify circuitry in mouse retina that contradicts these conventions. A2 amacrine cells are interneurons understood to mediate 'cross-over' inhibition by relaying excitatory input from the ON layer to inhibitory outputs in the OFF layer. Ultrastructural and physiological analyses show, however, that some A2s deliver powerful inhibition to OFF GC somas and proximal dendrites in the ON layer, rendering their inhibitory RFs smaller than their dendritic arbors. This OFF pathway, avoiding entirely the OFF region of the IPL, challenges several tenets of retinal circuitry.


2021 ◽  
Vol 2022 (1) ◽  
pp. pdb.prot106781
Author(s):  
Hai-yan He ◽  
Chih-Yang Lin ◽  
Hollis T. Cline

In vivo time-lapse imaging of complete dendritic arbor structures in tectal neurons of Xenopus laevis tadpoles has served as a powerful in vivo model to study activity-dependent structural plasticity in the central nervous system during early development. In addition to quantitative analysis of gross arbor structure, dynamic analysis of the four-dimensional data offers particularly valuable insights into the structural changes occurring in subcellular domains over experience/development-driven structural plasticity events. Such analysis allows not only quantifiable characterization of branch additions and retractions with high temporal resolution but also identification of the loci of action. This allows for a better understanding of the spatiotemporal association of structural changes to functional relevance. Here we describe a protocol for in vivo time-lapse imaging of complete dendritic arbors from individual neurons in the brains of anesthetized tadpoles with two-photon microscopy and data analysis of the time series of 3D dendritic arbors. For data analysis, we focus on dynamic analysis of reconstructed neuronal filaments using a customized open source computer program we developed (4D SPA), which allows aligning and matching of 3D neuronal structures across different time points with greatly improved speed and reliability. File converters are provided to convert reconstructed filament files from commercial reconstruction software to be used in 4D SPA. The program and user manual are publicly accessible and operate through a graphical user interface on both Windows and Mac OSX.


2021 ◽  
Author(s):  
Kaspar Podgorski ◽  
Tristan Dellazizzo Toth ◽  
Patrick Coleman ◽  
Serhiy Opushnyev ◽  
Janaina Brusco ◽  
...  

AbstractThe distribution of synapses across dendritic arbors determines their contribution to neural computations since nonlinear conductances amplify co-active clustered inputs. To determine whether, and how patterned synaptic topography arises during development we developed a random-access microscope capable of full-neuron calcium imaging of activity and structural plasticity of developing neurons in awake Xenopus tadpoles. By imaging growing brain neurons in response to plasticity-inducing visual training, we show coordinated growth and synaptogenesis specific to each neuron’s spike tuning. High evoked activity in neurons tuned to the trained stimulus induced pruning of non-driven inputs across the dendritic arbor as these neurons strengthened their responses to this stimulus. In stark contrast, initially unresponsive neurons that shifted their spike tuning toward the trained stimulus exhibited localized growth and new responsive synapses near existing active inputs. These information-driven growth rules promote clustering of synapses tuned to a developing neuron’s emerging receptive field.One-Sentence SummarySensory input directs brain neuronal growth and connectivity promoting clustering of synaptic inputs tuned to a neuron’s encoding properties.


2021 ◽  
Author(s):  
Juan A. Godoy ◽  
Jasson Espinoza-Caicedo ◽  
Nibaldo C Inestrosa

Abstract Background: Wnt signaling plays key roles in cellular and physiological processes, including cell proliferation, differentiation and migration during development and tissue homeostasis in adults. This pathway can be defined as Wnt/β-catenin-dependent or β-catenin-independent or "non-canonical", both signaling are involved in neurite and synapse development/maintenance. Porcupine (PORCN), an acylase that o-acylates Wnt ligands, a major modification in secretion and interaction with its receptors. We use Wnt-C59, a specific PORCN inhibitor, to block the secretion of endogenous Wnts in embryonic hippocampal neurons (DIV 4). Under these conditions, the activity of exogenous Wnt ligands on the complexity of the dendritic tree and axonal polarity were evaluatedMethods: Cultured primary embryonic hippocampal neurons obtained from Sprague-Dawley rat fetuses (E18), were cultured until day in vitro (DIV) 4 (according to Banker´s protocol) and treated with Wnt-C59 for 24h, Wnt ligands were added to the cultures on DIV 3 for 24h. Dendritic arbors and neurites were analysis by fluorescence microscopy. Transfection with Lipofectamine 2000 on DIV 2 of plasmid expressing eGFP and KIF5-Cherry was carried out to evaluate neuronal polarity. Immunostaining was performed with MAP1B and Tau protein. Immunoblot analysis was carried out with Wnt3a, b-catenin and GSK-3b (p-Ser9). Quantitative analysis of dendrite morphology was carried out with ImageJ (NIH) software with Neuron J Plugin.Results: We report, here, that Wnt-C59 treatment changed the morphology of the dendritic arbors and neurites of embryonic hippocampal neurons, with decreases b-catenin and Wnt3a and an apparent increase in GSK-3b (p-Ser9) levels. No effect was observed on axonal polarity. In sister cultures, addition of exogenous Wnt3a, 5a and 7a ligands rescued the changes in neuronal morphology. Wnt3a restored the length of neurites to near that of the control, but Wnt7a increased the neurite length beyond that of the control. Wnt5a also restored the length of neurites relative to Wnt concentrations. Conclusions: Results indicated that Wnt ligands, added exogenously, restored dendritic arbor complexity in embryonic hippocampal neurons, previously treated with a high affinity specific Porcupine inhibitor. We proposed that PORCN is an emerging molecular target of interest in the search for preclinical options to study and treat Wnt-related diseases.


2021 ◽  
Author(s):  
Polina Lyuboslavsky ◽  
Alena Kizimenko ◽  
Audrey C. Brumback

ABSTRACTAt the heart of the prefrontal executive and limbic networks is the mediodorsal thalamus (MD). Despite the importance of MD in a broad range of behaviors and neuropsychiatric disorders, virtually nothing is known about the physiology of neurons in MD. Here, we injected the retrograde tracer cholera toxin subunit B (CTB) into the medial prefrontal cortex (mPFC) of adult (8 – 12 week old) male and female wildtype mice. We prepared acute brain slices and used current clamp electrophysiology to measure and compare the intrinsic properties of the neurons in MD that project to mPFC (MD→mPFC neurons). MD→mPFC neurons are located predominantly in the medial (MD-M) and lateral (MD-L) subnuclei of MD. We found that that MD-M→mPFC neurons have longer membrane time constants, higher membrane resistance, less Hyperpolarization and Cyclic Nucleotide gated (HCN) channel activity, and more readily generate action potentials compared to MD-L→mPFC neurons. Additionally, MD-M→mPFC neurons have larger and more complex dendritic arbors compared to MD-L→mPFC neurons. These data demonstrating that the two populations of MD→mPFC neurons have distinct physiologies and morphologies suggests a differential role in thalamocortical information processing and potentially behavior.


Neuron ◽  
2020 ◽  
Author(s):  
Yukari H. Takeo ◽  
S. Andrew Shuster ◽  
Linnie Jiang ◽  
Miley C. Hu ◽  
David J. Luginbuhl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document