Relative contributions of excitatory and inhibitory neuronal activity to alkaline transients evoked by stimulation of Schaffer collaterals in the rat hippocampal slice

1995 ◽  
Vol 74 (2) ◽  
pp. 643-649 ◽  
Author(s):  
T. Taira ◽  
P. Paalasmaa ◽  
J. Voipio ◽  
K. Kaila

1. The neuronal basis of alkaline shifts in extracellular pH (pHo) evoked by stimulation of Schaffer collaterals was studied by means of double-barreled H(+)-selective microelectrodes in the area CA1 of rat hippocampal slices. 2. Alkaline transients in stratum pyramidale evoked by stimulation at a low frequency (5–10 Hz) were enhanced by pentobarbital sodium (100 microM). In the absence of the drug, inhibition of extracellular carbonic anhydrase (CAo) by benzolamide or by prontosildextran 5000 (PD 5000) resulted in an increase in the alkaline shifts. In contrast to this, alkaloses evoked by low-frequency stimulation in the presence of pentobarbital were attenuated by a subsequent inhibition of CAo. 3. Blockade of gamma-aminobutyric acid-A (GABAA) receptors with picrotoxin (PiTX; 100 microM) resulted in an enhancement of alkaline transients in s. pyramidale evoked by low-frequency stimulation (10 Hz) but suppressed alkaline shifts evoked by brief high-frequency (1 s, 100 Hz) trains of stimuli. 4. Application of trains of stimuli consisting of a constant number of pulses (50 or 100) revealed a striking dependence of the effect of benzolamide on stimulation frequency (10-200 Hz) in s. pyramidale: the enhancement of the alkaloses seen upon inhibition of CAo became progressively smaller with an increase in frequency, and at 100-200 Hz benzolamide produced a suppression or a complete block of the alkaline transients. However, alkaline transients evoked with the use of a constant train duration (5 s) were enhanced by benzolamide at all stimulation frequencies examined (5–200 Hz).(ABSTRACT TRUNCATED AT 250 WORDS)

1993 ◽  
Vol 69 (3) ◽  
pp. 953-964 ◽  
Author(s):  
P. W. Glimcher ◽  
D. L. Sparks

1. The first experiment of this study determined the effects of low-frequency stimulation of the monkey superior colliculus on spontaneous saccades in the dark. Stimulation trains, subthreshold for eliciting short-latency fixed-vector saccades, were highly effective at biasing the metrics (direction and amplitude) of spontaneous movements. During low-frequency stimulation, the distribution of saccade metrics was biased toward the direction and amplitude of movements induced by suprathreshold stimulation of the same collicular location. 2. Low-frequency stimulation biased the distribution of saccade metrics but did not initiate movements. The distribution of intervals between stimulation onset and the onset of the next saccade did not differ significantly from the distribution of intervals between an arbitrary point in time and the onset of the next saccade under unstimulated conditions. 3. Results of our second experiment indicate that low-frequency stimulation also influenced the metrics of visually guided saccades. The magnitude of the stimulation-induced bias increased as stimulation current or frequency was increased. 4. The time course of these effects was analyzed by terminating stimulation immediately before, during, or after visually guided saccades. Stimulation trains terminated at the onset of a movement were as effective as stimulation trains that continued throughout the movement. No effects were observed if stimulation ended 40–60 ms before the movement began. 5. These results show that low-frequency collicular stimulation can influence the direction and amplitude of spontaneous or visually guided saccades without initiating a movement. These data are compatible with the hypothesis that the collicular activity responsible for specifying the horizontal and vertical amplitude of a saccade differs from the type of collicular activity that initiates a saccade.


1996 ◽  
Vol 75 (2) ◽  
pp. 877-884 ◽  
Author(s):  
P. T. Huerta ◽  
J. E. Lisman

1. The induction of long-term weakening of synaptic transmission in rat hippocampal slices was examined in CA1 synapses during cholinergic modulation. 2. Bath application of the cholinergic agonist carbachol (50 microM) activated an oscillation of the local field potential in the theta-frequency range (5-12 Hz), termed theta. It was previously shown that a stimulation train of 40 single shocks (at 0.1 Hz) to the Schaffer collateral-commisural afferents, each synchronized with positive peaks of theta, caused homosynaptic long-term enhancement in CA1. Furthermore, long-term depression (LTD) was sporadically observed when the stimulation train was given at negative troughs of theta. Here we have sought to determine stable conditions for LTD induction during theta. 3. Synaptic weakening was reliably obtained, by giving 40 shocks (at 0.1 Hz) at theta-troughs, only in pathways that had been previously potentiated. This decrement, termed theta-LTD, was synapse specific because it did not occur in an independent pathway not stimulated during theta. The interval between the initial potentiating tetanus and theta-LTD induction could be as long as 90 min. 4. theta-LTD could be saturated; after consecutive episodes of theta-LTD induction, no significant further depression was obtained. Moreover, theta-LTD could be reversed by tetanic stimulation. 5. theta-LTD could prevent the induction of LTD by 600-900 pulses at 1 Hz. This suggests that the two protocols may share common mechanisms at the synaptic level. 6. We conclude that single presynaptic spikes that occur at low frequency and are properly timed to the troughs of theta may be a relevant mechanism for decreasing the strength of potentiated synapses.


2000 ◽  
Vol 83 (4) ◽  
pp. 2412-2420 ◽  
Author(s):  
Hiroshi Ikeda ◽  
Tatsuya Asai ◽  
Kazuyuki Murase

We investigated the neuronal plasticity in the spinal dorsal horn and its relationship with spinal inhibitory networks using an optical-imaging method that detects neuronal excitation. High-intensity single-pulse stimulation of the dorsal root activating both A and C fibers evoked an optical response in the lamina II (the substantia gelatinosa) of the dorsal horn in transverse slices of 12- to 25-day-old rat spinal cords stained with a voltage-sensitive dye, RH-482. The optical response, reflecting the net neuronal excitation along the slice-depth, was depressed by 28% for more than 1 h after a high-frequency conditioning stimulation of A fibers in the dorsal root (3 tetani of 100 Hz for 1 s with an interval of 10 s). The depression was not induced in a perfusion solution containing an NMDA antagonist,dl-2-amino-5-phosphonovaleric acid (AP5; 30 μM). In a solution containing the inhibitory amino acid antagonists bicuculline (1 μM) and strychnine (3 μM), and also in a low Cl−solution, the excitation evoked by the single-pulse stimulation was enhanced after the high-frequency stimulation by 31 and 18%, respectively. The enhanced response after conditioning was depotentiated by a low-frequency stimulation of A fibers (0.2–1 Hz for 10 min). Furthermore, once the low-frequency stimulation was applied, the high-frequency conditioning could not potentiate the excitation. Inhibitory transmissions thus regulate the mode of synaptic plasticity in the lamina II most likely at afferent terminals. The high-frequency conditioning elicits a long-term depression (LTD) of synaptic efficacy under a greater activity of inhibitory amino acids, but it results in a long-term potentiation (LTP) when inhibition is reduced. The low-frequency preconditioning inhibits the potentiation induction and maintenance by the high-frequency conditioning. These mechanisms might underlie robust changes of nociception, such as hypersensitivity after injury or inflammation and pain relief after electrical or cutaneous stimulation.


Sign in / Sign up

Export Citation Format

Share Document