Presynaptic effects of a trinitrobenzene analogue at the frog neuromuscular junction

1996 ◽  
Vol 76 (3) ◽  
pp. 1735-1743 ◽  
Author(s):  
M. Osanai ◽  
A. Tsuji ◽  
N. Suzuki ◽  
H. Kijima

1. Application of 0.15 mM 1-(hydroxyethylamino)-2,4,6-trinitrobenzene (HEATNB) to the frog neuromuscular junction induced a marked increase (4.0-fold) in the amplitude of nerve-evoked end-plate potentials (EPPs) obtained from intracellular and extracellular records, but only a slight increase (1.9-fold) in the frequency of miniature EPPs (MEPPs) obtained from intracellular records. The effects of HEATNB on EPP amplitude and MEPP frequency showed a similar time course, reaching a plateau level approximately 40 min after the start of application and returning to the control level after wash. The difference in the effects of HEATNB on EPP and MEPP frequency suggests that it specifically enhances synchronous transmitter release. 2. Comparing the effects and structure of HEATNB with those of 2,4,6-trinitrobenzene-1-sulfonic acid, we conclude that the observed increase in transmitter release is due to the effects of the trinitrobenzene moiety of those reagents. 3. The distribution of MEPP amplitude was unchanged by HEATNB treatment, indicating that its effects are presynaptic. 4. Among four components of short-term synaptic plasticity, HEATNB greatly decreased (approximately 70%) augmentation and increased (approximately 50%) potentiation, but had little effect on fast and slow facilitations. These results suggest that each of the short-term plasticities has a different mechanism and that HEATNB affects the same mechanisms as those of augmentation. 5. Even when a calcium chelator, bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid, was loaded into the presynaptic nerve terminal, the effects of HEATNB were not changed in nature, suggesting that effects of HEATNB persist independently of intracellular Ca2+ concentration. 6. These observations suggest that HEATNB may affect specific protein(s) involved primarily in synchronous transmitter release and not asynchronous release.

1977 ◽  
Vol 40 (2) ◽  
pp. 212-224 ◽  
Author(s):  
H. Kita ◽  
W. van der Kloot

1. The time course for the changes in miniature end-plate potential (min epp) frequency and in epp amplitude produced by alterations in the tonicity of the Ringer at the frog neuromuscular junction was studied. The relations between the tonicity and min epp frequency as well as epp amplitude were also investigated. 2. The change in min epp frequency occurred within 1 min after the start of the change in the tonicity of the extracellular solution. Following a shift to a hypertonic solution, the min epp frequencies were often maintained at a relatively steady, elevated level, even with large (+100 mosM) changes in tonicity. In other instances the elevation was transitory like the reported data for the rat neuromuscular junction. Essentially the same results were obtained in very low Ca2+-Ringer. Unlike the rat neuromuscular junction, the final level after hours of the increased min epp frequency caused by raising the osmolarity by more than 75 mosM was well above the control level. Following the return from a hypertonic to an initial solution there was a prompt decrease in min epp frequency to about the initial level; there was no indication of the transitory depression in min epp frequency following the return from hypertonic solution that has been reported in mammals. 3. Until the osmolarity of the Ringer reached about 420 mosM, the frequency of min epp continued to rise along a line relating log (min epp frequency) to (osmolarity)0.5. When the osmolarity exceeded 460 mosM, the relation started to level off. 4. The hypothesis that the min epp frequency in a Ringer with a given increased tonicity is a fixed multiple of the frequency in normal Ringer is not in accord with the data. 5. The decrease in epp amplitude caused by markedly hypertonic solutions also came about within 1 or 2 min after the start of the change in the tonicity of the solution surrounding the nerve terminal. 6. Hypertonic solutions did not appear to affect facilitation. 7. Below 360 mosM increasing the tonicity of the Ringer had little effect on the amplitude of epp. Above this level the amplitude decreased as the tonicity increased. At a given junction an increase in tonicity in a range above 360 mosM can cause an increase in min epp frequency and a decrease in epp amplitude. 8. The results are discussed in terms of the theories proposed to account for the effects of osmolarity on synaptic function. Two theories--the water flow hypothesis (11) and the barrier of water hypothesis (2)--do not fit with the results. The two other theories--calcium elevation (1) and screening of surface charges (3, 13, 21)--fail to account for important aspects of the results and therfore cannot be accepted without substantial modifications. None of the theories devised to account for the increase in min epp frequency predicts the falloff in frequency and in evoked quantal release that occurs in highly hypertonic solutions.


1987 ◽  
Vol 65 (5) ◽  
pp. 747-752 ◽  
Author(s):  
M. I. Glavinović

4-Aminopyridine markedly potentiates transmitter release at the frog cutaneous pectoris neuromuscular junction by increasing the quantal content even when applied at low concentrations (5–20 μM). This enhancement of transmitter release is associated with greater minimum synaptic latency, but the dispersion of the synaptic latencies does not appear much affected. This is in contrast with the action of tetraethylammonium (0.2–0.5 mM) in which case similar enhancement of transmitter release results not only in larger minimum synaptic latency but also in greater dispersion of the synaptic latencies. The time course of transmitter release associated with enhanced transmitter output is hence much more prolonged in the presence of tetraethylammonium than 4-aminopyridine, at least for low concentrations of 4-aminopyridine (5–20 μM). This indicates that their presynaptic actions differ significantly. This conclusion is further strengthened by the finding that unlike tetraethylammonium, 4-aminopyridine induces bursts of release, presumably by producing multiple action potentials in the nerve terminal. Tetraethylammonium probably acts by blocking the delayed potassium conductance, but the blockade of Ca2+-activated K+ conductance cannot be excluded. 4-Aminopyridine, however, probably blocks the fast inactivating (IA) K+ current, but it also may be acting directly on the voltage-dependent Ca2+ conductance or on the intracellular Ca2+ buffering.


Sign in / Sign up

Export Citation Format

Share Document