quantal content
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 3)

H-INDEX

21
(FIVE YEARS 1)

2020 ◽  
Vol 117 (42) ◽  
pp. 26429-26437
Author(s):  
Hua Wen ◽  
Kazumi Eckenstein ◽  
Vivien Weihrauch ◽  
Christian Stigloher ◽  
Paul Brehm

The escape response and rhythmic swimming in zebrafish are distinct behaviors mediated by two functionally distinct motoneuron (Mn) types. The primary (1°Mn) type depresses and has a large quantal content (Qc) and a high release probability (Pr). Conversely, the secondary (2°Mn) type facilitates and has low and variable Qc and Pr. This functional duality matches well the distinct associated behaviors, with the 1°Mn providing the strong, singular C bend initiating escape and the 2°Mn conferring weaker, rhythmic contractions. Contributing to these functional distinctions is our identification of P/Q-type calcium channels mediating transmitter release in 1°Mns and N-type channels in 2°Mns. Remarkably, despite these functional and behavioral distinctions, all ∼15 individual synapses on each muscle cell are shared by a 1°Mn bouton and at least one 2°Mn bouton. This blueprint of synaptic sharing provides an efficient way of controlling two different behaviors at the level of a single postsynaptic cell.


2020 ◽  
Author(s):  
Hua Wen ◽  
Kazumi Eckenstein ◽  
Vivien Weihrauch ◽  
Christian Stigloher ◽  
Paul Brehm

AbstractThe escape response and rhythmic swimming in zebrafish are distinct behaviors mediated by two functionally distinct motoneuron (Mn) types. The primary (1°Mn) type depresses, has a large quantal content (Qc), and a high release probability (Pr). Conversely, the secondary (2°Mn) type facilitates and has low and variable Qc and Pr. This functional duality matches well the distinct associated behaviors, with the 1°Mn providing the strong, singular C-bend initiating escape and the 2°Mn confers weaker, rhythmic contractions. Contributing to these functional distinctions is our identification of P/Q type calcium channels mediating transmitter release in 1°Mns and N type channels in 2°Mns. Remarkably, despite these functional and behavioral distinctions, all ~15 individual synapses on each muscle cell are shared by a 1°Mn bouton and at least one 2°Mn bouton. This novel blueprint of synaptic sharing provides an efficient way of controlling two different behaviors at the level of a single postsynaptic cell.


2020 ◽  
Vol 21 (6) ◽  
pp. 2034 ◽  
Author(s):  
Anna Miteva ◽  
Alexander Gaydukov ◽  
Olga Balezina

The ability of P2X7 receptors to potentiate rhythmically evoked acetylcholine (ACh) release through Ca2+ entry via P2X7 receptors and via L-type voltage-dependent Ca2+ channels (VDCCs) was compared by loading Ca2+ chelators into motor nerve terminals. Neuromuscular preparations of the diaphragms of wild-type (WT) mice and pannexin-1 knockout (Panx1−/−) mice, in which ACh release is potentiated by the disinhibition of the L-type VDCCs upon the activation of P2X7 receptors, were used. Miniature end-plate potentials (MEPPs) and evoked end-plate potentials (EPPs) were recorded when the motor terminals were loaded with slow or fast Ca2+ chelators (EGTA-AM or BAPTA-AM, respectively, 50 μM). In WT and Panx1−/− mice, EGTA-AM did not change either spontaneous or evoked ACh release, while BAPTA-AM inhibited synaptic transmission by suppressing the quantal content of EPPs throughout the course of the short rhythmic train (50 Hz, 1 s). In the motor synapses of either WT or Panx1−/− mice in the presence of BAPTA-AM, the activation of P2X7 receptors by BzATP (30 μM) returned the EPP quantal content to the control level. In the neuromuscular junctions (NMJs) of Panx1−/− mice, EGTA-AM completely prevented the BzATP-induced increase in EPP quantal content. After Panx1−/− NMJs were treated with BAPTA-AM, BzATP lost its ability to enhance the EPP quantal content to above the control level. Nitrendipine (1 μM), an inhibitor of L-type VDCCs, was unable to prevent this BzATP-induced enhancement of EPP quantal content to the control level. We propose that the activation of P2X7 receptors may provide additional Ca2+ entry into motor nerve terminals, which, independent of the modulation of L-type VDCC activity, can partially reduce the buffering capacity of Ca2+ chelators, thereby providing sufficient Ca2+ signals for ACh secretion at the control level. However, the activity of both Ca2+ chelators was sufficient to eliminate Ca2+ entry via L-type VDCCs activated by P2X7 receptors and increase the EPP quantal content in the NMJs of Panx1−/− mice to above the control level.


2017 ◽  
Vol 313 (3) ◽  
pp. R202-R210 ◽  
Author(s):  
Dengyun Ge ◽  
Nickolas Lavidis

Amphibian neuromuscular junctions (NMJs) are composed of hundreds of neurotransmitter release sites that exhibit nonuniform transmitter release probabilities and demonstrated seasonal modulation. We examined whether recruitment of release sites is variable when the extracellular calcium concentration ([Ca2+]o) is increased in the wet and dry seasons. The amount of transmitter released from the entire nerve terminal increases by approximately the fourth power as [Ca2+]o is increased. Toad ( Bufo marinus) NMJs were visualized using 3,3′-diethyloxardicarbocyanine iodide [DiOC2(5)] fluorescence, and focal loose patch extracellular recordings were used to record the end-plate currents (EPCs) from small groups of release sites. Quantal content ( m̄e), average probability of quantal release ( pe), and the number of active release sites ( ne) were determined for different [Ca2+]o. Our results indicated that the recruitment of quantal release sites with increasing [Ca2+]o differs spatially (between different groups of release sites) and also temporally (in different seasons). These differences were reflected by the nonuniform alterations in pe and ne. Most release site groups demonstrated an increase in both pe and ne when [Ca2+]o increased. In ~30% of release site groups examined, pe decreased while ne increased only during the active period (wet season). Although the dry season induced parallel right shift in the quantal release versus extracellular calcium concentration when compared with the wet season, the dependence of quantal content on [Ca2+]o was not changed. These results demonstrate the flexibility, reserve, and adaptive capacity of neuromuscular junctions in maintaining appropriate levels of neurotransmission.


2016 ◽  
Vol 595 (3) ◽  
pp. 839-864 ◽  
Author(s):  
Elisa G Krächan ◽  
Alexander U Fischer ◽  
Jürgen Franke ◽  
Eckhard Friauf

2015 ◽  
Vol 113 (3) ◽  
pp. 796-807 ◽  
Author(s):  
Ricardo Hernández-Martínez ◽  
José J. Aceves ◽  
Pavel E. Rueda-Orozco ◽  
Teresa Hernández-Flores ◽  
Omar Hernández-González ◽  
...  

The external globus pallidus (GPe) is central for basal ganglia processing. It expresses muscarinic cholinergic receptors and receives cholinergic afferents from the pedunculopontine nuclei (PPN) and other regions. The role of these receptors and afferents is unknown. Muscarinic M1-type receptors are expressed by synapses from striatal projection neurons (SPNs). Because axons from SPNs project to the GPe, one hypothesis is that striatopallidal GABAergic terminals may be modulated by M1 receptors. Alternatively, some M1 receptors may be postsynaptic in some pallidal neurons. Evidence of muscarinic modulation in any of these elements would suggest that cholinergic afferents from the PPN, or other sources, could modulate the function of the GPe. In this study, we show this evidence using striatopallidal slice preparations: after field stimulation in the striatum, the cholinergic muscarinic receptor agonist muscarine significantly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) from synapses that exhibited short-term synaptic facilitation. This inhibition was associated with significant increases in paired-pulse facilitation, and quantal content was proportional to IPSC amplitude. These actions were blocked by atropine, pirenzepine, and mamba toxin-7, suggesting that receptors involved were M1. In addition, we found that some pallidal neurons have functional postsynaptic M1 receptors. Moreover, some evoked IPSCs exhibited short-term depression and a different kind of modulation: they were indirectly modulated by muscarine via the activation of presynaptic cannabinoid CB1 receptors. Thus pallidal synapses presenting distinct forms of short-term plasticity were modulated differently.


Acta Naturae ◽  
2014 ◽  
Vol 6 (4) ◽  
pp. 110-115 ◽  
Author(s):  
A. E. Gaydukov ◽  
P. O. Bogacheva ◽  
E. O. Tarasova ◽  
O. P. Balezina

The mechanism of action of tonically applied choline, the agonist of 7 nicotinic acetylcholine receptors (nAChRs), to the spontaneous and evoked release of a neurotransmitter in mouse motor synapses in diaphragm neuromuscular preparations using intracellular microelectrode recordings of miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) was studied. Exogenous choline was shown to exhibit a presynaptic inhibitory effect on the amplitude and quantal content of EPPs for the activity of neuromuscular junction evoked by single and rhythmic stimuli. This effect was inhibited either by antagonists of 7-nAChRs, such as methyllycaconitine and -cobratoxin, or by blocking SK-type calcium-activated potassium (K Ca) channels with apamin or blocking intraterminal ryanodine receptors with ryanodine. A hypothesis was put forward that choline in mouse motoneuron nerve terminals can activate presynaptic 7-nAChRs, followed by the release of the stored calcium through ryanodine receptors and activation of SK-type KCa channels, resulting in sustained decay of the quantal content of the evoked neurotransmitter release.


2014 ◽  
Vol 112 (6) ◽  
pp. 1356-1366 ◽  
Author(s):  
Colin M. DeMill ◽  
Xinping Qiu ◽  
Marta Kisiel ◽  
Alanna Bolotta ◽  
Bryan A. Stewart

In this study, the juxtamembrane region of the Drosophila SNARE protein neuronal-Synaptobrevin (n-Syb) was tested for its role in synaptic transmission. A transgenic approach was used to express n-Syb mutant genes. The transgenes carried engineered point mutations that alter the amino acid sequence of the conserved tryptophan residues in the juxtamembrane sequence. Such transgenes were expressed in an n-syb hypomorphic background, which produces little endogenous protein. On their own, hypomorphic flies displayed severe motor inhibition, limited life span, reduced evoked junctional potentials (EJPs), decreased synchronicity in EJP time to peak, and potentiation of EJPs with 10-Hz stimulation. All of these deficits were restored to wild-type levels with the expression of wild-type transgenic n-syb, regulated by the endogenous promoter ( n-sybWT). We created transgenic mutants with one additional tryptophan ( n-sybWW) or one less tryptophan ( n-sybAA) than the wild-type sequence. While n-sybWWresembled n-sybWTin all variables listed, n-sybAAexhibited decreased EJP amplitude, synchronicity, and quantal content. To determine whether the n-syb juxtamembrane region is important for transduction of force arising from SNARE complex assembly during membrane fusion, we introduced short 6-amino acid ( n-sybL6) or long 24-amino acid ( n-sybL24) flexible linkers into the n-syb transgene. We observed a reduced EJP amplitude in n-sybL6but not n-sybL24, while both linker mutants showed a decreased quantal content and an effect on the readily releasable and recycling vesicle pools. In conclusion, mutation of the juxtamembrane region of n-syb deleteriously affected synaptic transmission at the Drosophila neuromuscular junction.


Sign in / Sign up

Export Citation Format

Share Document