orientation bias
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Mauro Pulin ◽  
Kilian E. Stockhausen ◽  
Olivia Andrea Masseck ◽  
Martin Kubitschke ◽  
Bjoern Busse ◽  
...  

Fluorescent proteins such as GFP are best excited by light that is polarized parallel to the dipole axis of the fluorophore. In most cases, fluorescent proteins are randomly oriented, resulting in unbiased images even when polarized light is used for excitation, e.g. in two-photon microcopy. Here we reveal a surprisingly strong polarization sensitivity in a class of GPCR-based neurotransmitter sensors where the fluorophore is anchored on both ends. In tubular structures such as dendrites, this effect led to a complete loss of membrane signal in dendrites running parallel to the polarization direction of the excitation beam. Our data reveal a major problem for two-photon measurements of neurotransmitter concentration that has not been recognized by the neuroscience community. To remedy the sensitivity to dendritic orientation, we designed an optical device that generates interleaved pulse trains of orthogonal polarization, removing the orientation bias from images. The passive device, which we inserted in the beam path of an existing two-photon microscope, also removed the strong direction bias in second harmonic generation (SHG) images. We conclude that for optical measurements of transmitter concentration with GPCR-based sensors, orthogonally polarized excitation is essential.


2021 ◽  
Author(s):  
Patricia L Foster ◽  
Brittany A Niccum ◽  
Heewook Lee

Encounters between DNA replication and transcription can cause genomic disruption, particularly when the two meet head-on. Whether these conflicts produce point mutations is debated. This paper presents detailed analyses of a large collection of mutations generated during mutation accumulation experiments with mismatch-repair (MMR) defective Escherichia coli. With MMR absent, mutations are primarily due to DNA replication errors. Overall, there were no differences in the frequencies of base-pair substitutions or small indels (insertion and deletions ≤ 4 bp) in the coding sequences or promoters of genes oriented codirectionally versus head-on to replication. Among a subset of highly expressed genes there was a 2- to 3-fold bias for indels in genes oriented head-on to replication, but this difference was almost entirely due to the asymmetrical genomic locations of tRNA genes containing mononucleotide runs, which are hotspots for indels.No additional orientation bias in mutation frequencies occurred when MMR-strains were also defective for transcription-coupled repair (TCR). However, in contrast to other reports, loss of TCR slightly increased the overall mutation rate, meaning that TCR is antimutagenic. There was no orientation bias in mutation frequencies among the stress-response genes that are regulated by RpoS or induced by DNA damage. Thus, biases in the locations of mutational targets can account for most, if not all, apparent biases in mutation frequencies between genes oriented head-on versus co-directional to replication. In addition, the data revealed a strong correlation of the frequency of base-pair substitutions with gene length, but no correlation with gene expression levels.


2021 ◽  
Vol 83 (6) ◽  
Author(s):  
Sara Bernardi ◽  
Raluca Eftimie ◽  
Kevin J. Painter

AbstractCollective migration of cells and animals often relies on a specialised set of “leaders”, whose role is to steer a population of naive followers towards some target. We formulate a continuous model to understand the dynamics and structure of such groups, splitting a population into separate follower and leader types with distinct orientation responses. We incorporate leader influence via three principal mechanisms: a bias in the orientation of leaders towards the destination (orientation-bias), a faster movement of leaders when moving towards the target (speed-bias), and leaders making themselves more clear to followers when moving towards the target (conspicuousness-bias). Analysis and numerical computation are used to assess the extent to which the swarm is successfully shepherded towards the target. We find that successful leadership can occur for each of these three mechanisms across a broad region of parameter space, with conspicuousness-bias emerging as the most robust. However, outside this parameter space we also find various forms of unsuccessful leadership. Forms of excessive influence can result in either swarm-splitting, where the leaders break free and followers are left rudderless, or a loss of swarm cohesion that leads to its eventual dispersal. Forms of low influence, on the other hand, can even generate swarms that move away from the target direction. Leadership must therefore be carefully managed to steer the swarm correctly.


2019 ◽  
Vol 41 (7) ◽  
pp. 1765-1774
Author(s):  
Christian Merkel ◽  
Jens‐Max Hopf ◽  
Mircea Ariel Schoenfeld

2019 ◽  
Author(s):  
Bakhyt Matkarimov ◽  
Murat K. Saparbaev

A variety of endogenous and exogenous factors induce chemical and structural alterations to cellular DNA, as well as errors occurring throughout DNA synthesis. These DNA damages are cytotoxic, miscoding, or both, and are believed to be at the origin of cancer and other age related diseases. A human cell, in addition to nuclear DNA, contains thousands copies of mitochondrial DNA (mtDNA), a double-stranded, circular molecule of 16,569 bp. It was proposed that mtDNA is a critical target for reactive oxygen species (ROS), by-products of the oxidative phosphorylation (OXPHOS), generated in the organelle during aerobic respiration. Indeed, oxidative damage to mtDNA are more extensive and persistent as compared to that of nuclear DNA. Although, transversions are the hallmarks of mutations induced by ROS, paradoxically, the majority of mtDNA mutations that occurred during ageing and cancer are transitions. Furthermore, these mutations exhibit a striking strand orientation bias: T→C/G→A transitions preferentially occur on the Light strand, whereas C→T/A→G on the Heavy strand of mtDNA. Here, we propose that the majority of mtDNA progenies, created after multiple rounds of DNA replication, are derived from the Heavy strand only, due to asymmetric replication of the DNA strand anchored to inner membrane via D-loop structure.


2018 ◽  
Author(s):  
James Chen ◽  
Alex J. Noble ◽  
Jin Young Kang ◽  
Seth A. Darst

AbstractPreferred particle orientation presents a major challenge for many single particle cryoelectron microscopy (cryo-EM) samples. Orientation bias limits the angular information used to generate three-dimensional maps and thus affects the reliability and interpretability of the structural models. The primary cause of preferred orientation is presumed to be due to adsorption of the particles at the air/water interface during cryo-EM grid preparation. To ameliorate this problem, detergents are often added to cryo-EM samples to alter the properties of the air/water interface. We have found that many bacterial transcription complexes suffer severe orientation bias when examined by cryo-EM. The addition of non-ionic detergents, such as NP-40, does not remove the orientation bias but the Zwitter-ionic detergent CHAPSO significantly broadens the particle orientation distributions, yielding isotropically uniform maps. We used cryoelectron tomography to examine the particle distribution within the ice layer of cryo-EM grid preparations of Escherichia coli 6S RNA/RNA polymerase holoenzyme particles. In the absence of CHAPSO, essentially all of the particles are located at the ice surfaces. CHAPSO at the critical micelle concentration eliminates particle absorption at the air/water interface and allows particles to randomly orient in the vitreous ice layer. We find that CHAPSO eliminates orientation bias for a wide range of bacterial transcription complexes containing E. coli or Mycobacterium tuberculosis RNA polymerases. Findings of this study confirm the presumed basis for how detergents can help remove orientation bias in cryo-EM samples and establishes CHAPSO as a useful tool to facilitate cryo-EM studies of baterial transcription complexes.


Sign in / Sign up

Export Citation Format

Share Document