Bidirectional Synaptic Plasticity Correlated With the Magnitude of Dendritic Calcium Transients Above a Threshold

2001 ◽  
Vol 85 (1) ◽  
pp. 399-406 ◽  
Author(s):  
R. J. Cormier ◽  
A. C. Greenwood ◽  
J. A. Connor

The magnitude of postsynaptic Ca2+ transients is thought to affect activity-dependent synaptic plasticity associated with learning and memory. Large Ca2+ transients have been implicated in the induction of long-term potentiation (LTP), while smaller Ca2+ transients have been associated with long-term depression (LTD). However, a direct relationship has not been demonstrated between Ca2+ measurements and direction of synaptic plasticity in the same cells, using one induction protocol. Here, we used glutamate iontophoresis to induce Ca2+ transients in hippocampal CA1 neurons injected with the Ca2+-indicator fura-2. Test stimulation of one or two synaptic pathways before and after iontophoresis showed that the direction of synaptic plasticity correlated with glutamate-induced Ca2+ levels above a threshold, below which no plasticity occurred (∼180 nM). Relatively low Ca2+ levels (180–500 nM) typically led to LTD of synaptic transmission and higher levels (>500 nM) often led to LTP. Failure to show plasticity correlated with Ca2+ levels in two distinct ranges: <180 nM and ∼450–600 nM, while only LTD occurred between these ranges. Our data support a class of models in which failure of Ca2+ transients to affect transmission may arise either from insufficient Ca2+ to affect Ca2+-sensitive proteins regulating synaptic strength through opposing activities or from higher Ca2+ levels that reset activities of such proteins without affecting the net balance of activities. Our estimates of the threshold Ca2+ level for LTD (∼180 nM) and for the transition from LTD to LTP (∼540 nM) may assist in constraining the molecular details of such models.

2021 ◽  
Author(s):  
Hiromi H Ueda ◽  
Aiko Sato ◽  
Maki Onda ◽  
Hideji Murakoshi

Synaptic plasticity is long-lasting changes in synaptic currents and structure. When neurons are exposed to signals that induce aberrant neuronal excitation, they increase the threshold for the induction of synaptic plasticity, called homeostatic plasticity. To further understand the homeostatic regulation of synaptic plasticity and its molecular mechanisms, we investigated glutamate uncaging/photoactivatable (pa)CaMKII-dependent sLTP induction in hippocampal CA1 neurons after chronic neuronal excitation by GABAA receptor antagonists. The neuronal excitation suppressed the glutamate uncaging-evoked Ca2+ influx and failed to induce sLTP. Single-spine optogenetic stimulation using paCaMKII also failed to induce sLTP, suggesting that CaMKII downstream signaling is impaired in response to chronic neuronal excitation. Furthermore, while the inhibition of Ca2+ influx was protein synthesis-independent, paCaMKII-induced sLTP depended on it. Our findings demonstrate that chronic neuronal excitation suppresses sLTP in two independent ways (i.e., the inhibitions of Ca2+ influx and CaMKII downstream signaling), which may contribute to the robust neuronal protection in excitable environments.


2019 ◽  
Author(s):  
Junli Zhao ◽  
Ru-Rong Ji

ABSTRACTEmerging immunotherapy using anti-PD-1 antibodies have improved survival in cancer patients by immune activation. Here we show that functional PD-1 receptor is present in hippocampal CA1 neurons and loss of PD-1 or local anti-PD-1 treatment with nivolumab enhances neuronal excitability and long-term potentiation in CA1 neurons, leading to enhanced learning and memory. Our findings suggest that anti-PD-1 antibody also acts as a neurotherapy for improving memory and counteracting cognitive decline.


1991 ◽  
Vol 555 (1) ◽  
pp. 112-122 ◽  
Author(s):  
Satoshi Fujii ◽  
Kazuo Saito ◽  
Hiroyoshi Miyakawa ◽  
Ken-ichi Ito ◽  
Hiroshi Kato

1999 ◽  
Vol 82 (4) ◽  
pp. 2024-2028 ◽  
Author(s):  
Hongyan Wang ◽  
John J. Wagner

The activity history of a given neuron has been suggested to influence its future responses to synaptic input in one prominent model of experience-dependent synaptic plasticity proposed by Bienenstock, Cooper, and Munro (BCM theory). Because plasticity of synaptic plasticity (i.e., metaplasticity) is similar in concept to aspects of the BCM proposal, we have tested the possibility that a form of metaplasticity induced by a priming stimulation protocol might exhibit BCM-like characteristics. CA1 field excitatory postsynaptic potentials (EPSPs) obtained from rat hippocampal slices were used to monitor synaptic responses before and after conditioning stimuli (3–100 Hz) of the Schaffer collateral inputs. A substantial rightward shift (>5-fold) in the frequency threshold between long-term depression (LTD) and long-term potentiation (LTP) was observed <1 h after priming. This change in the LTD/P crossover point occurred at both primed and unprimed synaptic pathways. These results provide new support for the existence of a rapid, heterosynaptic, experience-dependent mechanism that is capable of modifying the synaptic plasticity phenomena that are commonly proposed to be important for developmental and learning/memory processes in the brain.


2020 ◽  
Vol 4 ◽  
pp. 239821282095784
Author(s):  
Heather Kang ◽  
Pojeong Park ◽  
Muchun Han ◽  
Patrick Tidball ◽  
John Georgiou ◽  
...  

The ketamine metabolite (2 R,6 R)-hydroxynorketamine has been proposed to have rapid and persistent antidepressant actions in rodents, but its mechanism of action is controversial. We have compared the ability of ( R,S)-ketamine with the (2 S,6 S)- and (2 R,6 R)-isomers of hydroxynorketamine to affect the induction of N-methyl-d-aspartate receptor–dependent long-term potentiation in the mouse hippocampus. Following pre-incubation of these compounds, we observed a concentration-dependent (1–10 μM) inhibition of long-term potentiation by ketamine and a similar effect of (2 S,6 S)-hydroxynorketamine. At a concentration of 10 μM, (2 R,6 R)-hydroxynorketamine also inhibited the induction of long-term potentiation. These findings raise the possibility that inhibition of N-methyl-d-aspartate receptor–mediated synaptic plasticity is a site of action of the hydroxynorketamine metabolites with respect to their rapid and long-lasting antidepressant-like effects.


Sign in / Sign up

Export Citation Format

Share Document