Two Cortical Areas Mediate Multisensory Integration in Superior Colliculus Neurons

2001 ◽  
Vol 85 (2) ◽  
pp. 506-522 ◽  
Author(s):  
Wan Jiang ◽  
Mark T. Wallace ◽  
Huai Jiang ◽  
J. William Vaughan ◽  
Barry E. Stein

The majority of multisensory neurons in the cat superior colliculus (SC) are able to synthesize cross-modal cues (e.g., visual and auditory) and thereby produce responses greater than those elicited by the most effective single modality stimulus and, sometimes, greater than those predicted by the arithmetic sum of their modality-specific responses. The present study examined the role of corticotectal inputs from two cortical areas, the anterior ectosylvian sulcus (AES) and the rostral aspect of the lateral suprasylvian sulcus (rLS), in producing these response enhancements. This was accomplished by evaluating the multisensory properties of individual SC neurons during reversible deactivation of these cortices individually and in combination using cryogenic deactivation techniques. Cortical deactivation eliminated the characteristic multisensory response enhancement of nearly all SC neurons but generally had little or no effect on a neuron's modality-specific responses. Thus, the responses of SC neurons to combinations of cross-modal stimuli were now no different from those evoked by one or the other of these stimuli individually. Of the two cortical areas, AES had a much greater impact on SC multisensory integrative processes, with nearly half the SC neurons sampled dependent on it alone. In contrast, only a small number of SC neurons depended solely on rLS. However, most SC neurons exhibited dual dependencies, and their multisensory enhancement was mediated by either synergistic or redundant influences from AES and rLS. Corticotectal synergy was evident when deactivating either cortical area compromised the multisensory enhancement of an SC neuron, whereas corticotectal redundancy was evident when deactivation of both cortical areas was required to produce this effect. The results suggest that, although multisensory SC neurons can be created as a consequence of a variety of converging tectopetal afferents that are derived from a host of subcortical and cortical structures, the ability to synthesize cross-modal inputs, and thereby produce an enhanced multisensory response, requires functional inputs from the AES, the rLS, or both.

1994 ◽  
Vol 71 (1) ◽  
pp. 429-432 ◽  
Author(s):  
M. T. Wallace ◽  
B. E. Stein

1. The synthesis of information from different sensory modalities in the superior colliculus is an important precursor of attentive and orientation behavior. 2. This integration of multisensory information is critically dependent on inputs from a small area of association cortex, the anterior ectosylvian sulcus. Removal of these corticotectal influences can have a remarkably specific effect: it can eliminate multisensory integration in superior colliculus neurons while leaving their responses to unimodal cues intact. 3. Apparently, some of the associative functions of cortex are accomplished via its target neurons in the midbrain.


2006 ◽  
Vol 95 (3) ◽  
pp. 1380-1396 ◽  
Author(s):  
Wan Jiang ◽  
Huai Jiang ◽  
Barry E. Stein

The ability of cat superior colliculus (SC) neurons to synthesize information from different senses depends on influences from two areas of the cortex: the anterior ectosylvian sulcus (AES) and the rostral lateral suprasylvian sulcus (rLS). Reversibly deactivating the inputs to the SC from either of these areas in normal adults severely compromises this ability and the SC-mediated behaviors that depend on it. In this study, we found that removal of these areas in neonatal animals precluded the normal development of multisensory SC processes. At maturity there was a substantial decrease in the incidence of multisensory neurons, and those multisensory neurons that did develop were highly abnormal. Their cross-modal receptive field register was severely compromised, as was their ability to integrate cross-modal stimuli. Apparently, despite the impressive plasticity of the neonatal brain, it cannot compensate for the early loss of these cortices. Surprisingly, however, neonatal removal of either AES or rLS had comparatively minor consequences on these properties. At maturity multisensory SC neurons were quite common: they developed the characteristic spatial register among their unisensory receptive fields and exhibited normal adult-like multisensory integration. These observations suggest that during early ontogeny, when the multisensory properties of SC neurons are being crafted, AES and rLS may have the ability to compensate for the loss of one another's cortico-collicular influences so that normal multisensory processes can develop in the SC.


1993 ◽  
Vol 69 (6) ◽  
pp. 1797-1809 ◽  
Author(s):  
M. T. Wallace ◽  
M. A. Meredith ◽  
B. E. Stein

1. Physiological methods were used to examine the pattern of inputs from different sensory cortices onto individual superior colliculus neurons. 2. Visual, auditory, and somatosensory influences from anterior ectosylvian sulcus (AES) and visual influences from lateral suprasylvian (LS) cortex were found to converge onto individual multisensory neurons in the cat superior colliculus. An excellent topographic relationship was found between the different sensory cortices and their target neurons in the superior colliculus. 3. Corticotectal inputs were derived solely from unimodal neurons. Multisensory neurons in AES and LS were not antidromically activated from the superior colliculus. 4. Orthodromic and antidromic latencies were consistent with monosynaptic corticotectal inputs arising from LS and the three subdivisions of AES (SIV, Field AES, and AEV). 5. Superior colliculus neurons that received convergent cortical inputs formed a principal component of the tecto-reticulospinal tract. Thus there appears to be extensive cortical control over the output neurons through which the superior colliculus mediates attentive and orientation behaviors. 6. Two other multisensory circuits were identified. A population of multisensory superior colliculus neurons was found, which neither received convergent cortical input nor projected into the tecto-reticulo-spinal tract. In addition, multisensory neurons in AES and LS proved to be independent of the superior colliculus (i.e., they were not corticotectal). While it is likely that these three distinct multisensory neural circuits have different functional roles, their constituent neurons appear to integrate their various sensory inputs in much the same way.


1997 ◽  
Vol 78 (4) ◽  
pp. 2221-2225 ◽  
Author(s):  
Neeraj J. Gandhi ◽  
Edward L. Keller

Gandhi, Neeraj J. and Edward L. Keller. Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey. J. Neurophysiol. 78: 2221–2225, 1997. One proposed role of the superior colliculus (SC) in oculomotor control is to suppress or excite the activity of brain stem omnipause neurons (OPNs) to initiate or terminate saccades, respectively. Although connections from the SC to the OPNs have been demonstrated, the spatial distribution and discharge characteristics of the projecting neurons from the SC remain unknown. We mapped the spatial distribution of the deeper-layer neurons of the SC by stimulating the region of the OPNs to identify antidromic projections and found that the density of direct projections from the SC to the OPNs was greatest in the most rostral region and decreased gradually for more caudal sites. On the basis of saccade-related discharge characteristics, the antidromically driven neurons were predominantly fixation and buildup neurons. The spatially distributed SC projections to the OPNs and the discharge characteristics of the SC neurons suggest that the direct projections from SC to OPNs are excitatory. Finally, we propose how excitation and disfacilitation from SC activity can contribute to modulation of OPN response and control saccades.


2002 ◽  
Vol 14 (8) ◽  
pp. 1240-1255 ◽  
Author(s):  
Wan Jiang ◽  
Huai Jiang ◽  
Barry E. Stein

It had previously been shown that influences from two cortical areas, the anterior ectosylvian sulcus (AES) and the rostral lateral suprasylvian sulcus (rLS), play critical roles in rendering superior colliculus (SC) neurons capable of synthesizing their cross-modal inputs. The present studies examined the consequences of selectively eliminating these cortical influences on SC-mediated orientation responses to cross-modal stimuli. Cats were trained to orient to a low-intensity modality-specific cue (visual) in the presence or absence of a neutral cue from another modality (auditory). The visual target could appear at various locations within 45° of the midline, and the stimulus effectiveness was varied to yield an average of correct orientation responses of approximately 45%. Response enhancement and depression were observed when the auditory cue was coupled with the target stimulus: A substantially enhanced probability in correct responses was evident when the cross-modal stimuli were spatially coincident, and a substantially decreased response probability was obtained when the stimuli were spatially disparate. Cryogenic blockade of either AES or rLS disrupted these behavioral effects, thereby eliminating the enhanced performance in response to spatially coincident cross-modal cues and degrading the depressed performance in response to spatially disparate cross-modal cues. These disruptive effects on targets contralateral to the deactivated cortex were restricted to multisensory interactive processes. Orientation to modality-specific targets was unchanged. Furthermore, the pattern of orientation errors was unaffected by cortical deactivation. These data bear striking similarities to the effects of AES and rLS deactivation on multisensory integration at the level of individual SC neurons. Presumably, eliminating the critical influences from AES or rLS cortex disrupts SC multisensory synthesis that, in turn, disables SC-mediated multisensory orientation behaviors.


Sign in / Sign up

Export Citation Format

Share Document