D-106 Invited—In Situ Neutron Diffraction Studies of Deformation-Induced Phase Transformation in An Ultrafine Grained Trip Steel

2007 ◽  
Vol 22 (2) ◽  
pp. 182-182
Author(s):  
H. Choo ◽  
K. Tao ◽  
B. Clausen ◽  
J. E. Jin ◽  
Y. K. Lee
Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 101
Author(s):  
Youngsu Kim ◽  
Wookjin Choi ◽  
Hahn Choo ◽  
Ke An ◽  
Ho-Suk Choi ◽  
...  

In situ neutron diffraction was employed to examine the phase transformation behavior of high-Mn steels with different carbon contents (0.1, 0.3, and 0.5 wt.%C). With increasing carbon contents from 0.1 C to 0.5 C, the austenite phase fraction among the constituent phases increased from ~66% to ~98%, and stacking fault energy (SFE) increased from ~0.65 to ~16.5 mJ/m2. The 0.1 C and 0.3 C steels underwent phase transformation from γ-austenite to ε-martensite or α’-martensite during tensile deformation. On the other hand, the 0.5 C steel underwent phase transformation only from γ-austenite to ε-martensite. The 0.3 C steel exhibited a low yield strength, a high strain hardening rate, and the smallest elongation. The high strain hardening of the 0.3 C alloy was due to a rapid phase transformation rate from γ-austenite to ε-martensite. The austenite of 0.5 C steel was strengthened by mechanical twinning during loading process, and the twinning-induced plasticity (TWIP) effect resulted in a large ductility. The 0.5 wt.% carbon addition stabilized the austenite phase by delaying the onset of the ε-martensite phase transformation.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 360 ◽  
Author(s):  
Dunji Yu ◽  
Yan Chen ◽  
Lu Huang ◽  
Ke An

Real-time in situ neutron diffraction was used to characterize the crystal structure evolution in a transformation-induced plasticity (TRIP) sheet steel during annealing up to 1000 °C and then cooling to 60 °C. Based on the results of full-pattern Rietveld refinement, critical temperature regions were determined in which the transformations of retained austenite to ferrite and ferrite to high-temperature austenite during heating and the transformation of austenite to ferrite during cooling occurred, respectively. The phase-specific lattice variation with temperature was further analyzed to comprehensively understand the role of carbon diffusion in accordance with phase transformation, which also shed light on the determination of internal stress in retained austenite. These results prove the technique of real-time in situ neutron diffraction as a powerful tool for heat treatment design of novel metallic materials.


2015 ◽  
Vol 106 (17) ◽  
pp. 171911 ◽  
Author(s):  
Ahmed A. Saleh ◽  
Donald W. Brown ◽  
Elena V. Pereloma ◽  
Bjørn Clausen ◽  
Christopher H. J. Davies ◽  
...  

2005 ◽  
Vol 502 ◽  
pp. 339-344 ◽  
Author(s):  
Jozef Zrník ◽  
O. Muránsky ◽  
Petr Lukáš ◽  
Petr Šittner ◽  
Z. Nový

The precise characterization of the multiphase microstructure of low alloyed TRIP steels is of great importance for the interpretation and optimisation of their mechanical properties. In-situ neutron diffraction experiment was employed for monitoring of conditioned austenite transformation to ferrite, and also for retained austenite stability evaluation during subsequent mechanical loading. The progress in austenite decomposition to ferrite is monitored at different transformation temperatures. The relevant information on the course of transformation is extracted from neutron diffraction spectra. The integrated intensities of austenite and ferrite neutron diffraction profiles over the time of transformation are then assumed as a measure of the volume fractions of both phases in dependence on transformation temperature. Useful information was also obtained on retained austenite stability in TRIP steel during mechanical testing. The in-situ neutron diffraction experiments were conducted at two different diffractometers to assess the reliability of neutron diffraction technique in monitoring the transformation of retained austenite during room temperature tensile test. In both experiments the neutron investigation was focused on the volume fraction quantification of retained austenite as well as on internal stresses rising in structure phases due to retained austenite transformation.


2006 ◽  
Vol 385-386 ◽  
pp. 555-557 ◽  
Author(s):  
Nobuo Tezuka ◽  
It-Meng Low ◽  
Ian J. Davies ◽  
Michael Prior ◽  
Andrew Studer

2011 ◽  
Vol 465 ◽  
pp. 390-394 ◽  
Author(s):  
Jozef Zrník ◽  
Ondrej Muránsky ◽  
Petr Šittner ◽  
E.C. Oliver

The paper presents results of in-situ neutron diffraction experiments aimed on monitoring the phase evolution and load distribution in TRIP steel when subjected to tensile loading. Tensile deformation behaviour of TRIP steel with different initial microstructures showed that the applied tensile load is redistributed at the yield point and the harder retained austenite (Feγ) bears larger load then ferrite (Feα) matrix. After load partioning is finished, macroscopic yielding comes through simultaneous activity of the martensite transformation (in the austenite) and plastic deformation process in ferrite. The steel with higher volume fraction of retained austenite and less stronger ferrite appears to be a better TRIP steel having efficient structure for better plasticity purpose.


Sign in / Sign up

Export Citation Format

Share Document