scholarly journals A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
Hang Leong Chung ◽  
Xianming Qing ◽  
Zhi Ning Chen

A broadband circularly polarized stacked probe-fed antenna suitable for UHF RFID applications is presented and studied. The proposed antenna is fed by two probes which are connected to a hybrid coupler. Two parasitic patches are stacked above a primary probe-fed patch to enhance the bandwidth of the antenna. The optimized antenna prototype achieves gain of more than 6.5 dBic, axial ratio of less than 3.0 dB, and return loss of less than−15 dB over the UHF band of 820–980 MHz (17.7%). Parametric studies are carried out to demonstrate the effects of antenna geometry parameters on the performance. The proposed antenna can be a good candidate for UHF RFID applications.

2021 ◽  
Vol 113 ◽  
pp. 1-11
Author(s):  
Zhongbao Wang ◽  
Ya-Nan Wang ◽  
Xinhong Liu ◽  
Hongmei Liu ◽  
Shao-Jun Fang

2020 ◽  
Vol 10 (3) ◽  
pp. 5655-5659
Author(s):  
K. Mekki ◽  
O. Necibi ◽  
C. Boussetta ◽  
A. Gharsallah

This paper presents a Circularly Polarized Microstrip Patch Antenna (CPMPA) miniaturization with parasitic elements, suitable for UHF RFID systems. The antenna consists of a half E-shaped patch with cuts. A truncated corner patch can generate an additional Circular Polarization (CP) radiation mode and further enhance the axial ratio. Two symmetric cross shaped slots along the horizontal axis of the CPMPA have been embedded, and its dimension optimization has been based on parametric analysis. Thanks to this slotted structure and reduced surface area, good CP quality has been obtained with a 25% overall size reduction. The proposed antenna is lightweight, low profile, simple, and easily produced. The structure’s simulation is made using CST Studio Suite 2014 to compute return loss (S11), gain, and the axial ratio of the antenna while the overall miniaturized antenna’s volume is 77mm×58mm×1.6mm operating at 915MHz.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 55883-55892 ◽  
Author(s):  
Junlong Li ◽  
Hui Liu ◽  
Shuai Zhang ◽  
Miaohui Luo ◽  
Yuan Zhang ◽  
...  

Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


Slit loaded circularly polarized patch antenna embedded on planar structure and curvature structure were investigated. The curvature effect on slit loaded patch antenna determines the limiting value of radius of curvature to obtain circular polarization. At a certain radius of curvature (ROC) around 131.3 mm, circular polarization have been obtained with axial ratio band width around 15 MHz and return loss bandwidth around 56 MHz compared with 17 MHz and 65 MHz as that of planar structure. The beam width responsible for coverage of planar patch are 104 and 107 degree with respect to 84 degree and 124 degree of curved patch at phi = 0 and 90 degree respectively


2014 ◽  
Vol 7 (6) ◽  
pp. 753-758 ◽  
Author(s):  
Ch. Sulakshana ◽  
L. Anjaneyulu

This paper presents a simple and compact coplanar waveguide (CPW)-fed circular-shaped reconfigurable patch antenna with a switchable circular polarization (CP) sense. The circular patch is cut at the ends vertically and switches are introduced to connect the patch ends. By controlling the ON/OFF status of the two switches, the polarization of the antenna can be switched between two states: left-hand circular polarization and right-hand circular polarization. The patch is designed on a very thin RT Duroid substrate of dielectric constant (εr) of 2.2 and thickness of 0.254 mm. The overall antenna dimensions are 35 × 30 mm. The antenna is designed and simulated using finite-element method -based EM simulator, HFSS. For each switching condition the return loss curve, radiation pattern are obtained. Axial ratio curves for polarization diversity cases are also plotted. Parametric studies have been made in order to get optimized values for certain antenna dimensions such as thickness, CPW ground to feed gap, etc.


2012 ◽  
Vol 1 (2) ◽  
pp. 97-106
Author(s):  
Sanyog Rawat ◽  
K K Sharma

In this paper a new geometry of circularly polarized patch antenna is proposed with improved bandwidth. The radiation performance of proposed patch antenna is investigated using IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna. The simulated return loss, axial ratio and impedance with frequency for the proposed antenna are reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slots, the impedance bandwidth can be enhanced upto 10.15% as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.DOI: 10.18495/comengapp.12.097106


Sign in / Sign up

Export Citation Format

Share Document