scholarly journals Chaos in Ecology: The Topological Entropy of a Tritrophic Food Chain Model

2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Jorge Duarte ◽  
Cristina Januário ◽  
Nuno Martins

An ecosystem is a web of complex interactions among species. With the purpose of understanding this complexity, it is necessary to study basic food chain dynamics with preys, predators and superpredators interactions. Although there is an elegant interpretation of ecological models in terms of chaos theory, the complex behavior of chaotic food chain systems is not completely understood. In the present work we study a specific food chain model from the literature. Using results from symbolic dynamics, we characterize the topological entropy of a family of logistic-like Poincaré return maps that replicates salient aspects of the dynamics of the model. The analysis of the variation of this numerical invariant, in some realistic system parameter region, allows us to quantify and to distinguish different chaotic regimes. This work is still another illustration of the role that the theory of dynamical systems can play in the study of chaotic dynamics in life sciences.

2008 ◽  
Vol 13 (3) ◽  
pp. 305-324 ◽  
Author(s):  
M. Bandyopadhyay ◽  
S. Chatterjee ◽  
S. Chakraborty ◽  
J. Chattopadhyay

Ecological systems have all the properties to produce chaotic dynamics. To predict the chaotic behavior in an ecological system and its possible control mechanism is interesting. Aziz-Alaoui [1] considered a tri-trophic food-chain model with modified Leslie-Gower type growth rate for top-predator population and established the chaotic dynamics exhibited by the model system for a certain choice of parameter values. We have modified the said model by incorporating density dependent death rate for predator population. Our mathematical findings reveal the fact that there are two coexisting equilibrium points one of which is a source and the other one is a sink. The positive equilibrium point which is sink is actually globally asymptotically stable under certain parametric conditions. Numerical experiment analysis shows that the model system are capable to produce chaotic dynamics when the rate of intra specific completion is very low and chaotic dynamics disappears for a certain value of the rate of intra specific completion for predator species. Our results suggest that the consideration of density dependent death rate for predator species have the ability to control the chaotic dynamics.


2020 ◽  
Vol 1591 ◽  
pp. 012082
Author(s):  
Hiba Abdullah Ibrahim ◽  
Raid Kamel Naji

Author(s):  
Mainul Hossain ◽  
N.C. Pati ◽  
Saheb Pal ◽  
Sourav Rana ◽  
Nikhil Pal ◽  
...  

1979 ◽  
Vol 15 (2) ◽  
pp. 217-231 ◽  
Author(s):  
Thomas L. Vincent ◽  
Leonard R. Anderson

Sign in / Sign up

Export Citation Format

Share Document