scholarly journals Maximizing Output Power of a Solar Panel via Combination of Sun Tracking and Maximum Power Point Tracking by Fuzzy Controllers

2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Mohsen Taherbaneh ◽  
A. H. Rezaie ◽  
H. Ghafoorifard ◽  
K. Rahimi ◽  
M. B. Menhaj

In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panelI-Vcurves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.

Author(s):  
Leonardo Candido Corrêa ◽  
João Manoel Lenz ◽  
Cláudia Garrastazu Ribeiro ◽  
Felix Alberto Farret

An emulator for the nonconventional Magnus wind turbine was designed and developed in this study. A brief discussion is made of this special case of horizontal axis wind generator and of the main physics principles involving the Magnus phenomenon. A mathematical model was used to emulate the static behavior of the Magnus wind turbine and a detailed analysis is presented about its peculiar rotating cylinder characteristics. Based on the relationship between cylinder blade rotation and power coefficient, a hill climb search algorithm was developed to perform maximum power point tracking. The impact of the cylinder's rotation speed on the turbine net output power was evaluated. A controlled direct current motor was used to provide torque, based on the Magnus turbine model, and drive a permanent magnet synchronous generator (PMSG); the latter was controlled by a buck converter in order to extract the maximum generated power (MGP). Simulations of the Magnus wind turbine model and its maximum power point tracking (MPPT) control are also presented. A prototype of the proposed emulator was developed and operated by a user-friendly LabVIEW interface. Measurements of the power delivered to the load were acquired for different wind speeds; these results were analyzed and compared with simulated values showing a good behavior of the emulator with respect to the turbine model. The proposed control technique for maximizing the output power was validated by emulated results. The modeling and development of the Magnus turbine emulator also serve to encourage further studies on generation and control with this wind machine.


2018 ◽  
Vol 47 (8) ◽  
pp. 4519-4532 ◽  
Author(s):  
Jose Manuel Lopez-Guede ◽  
Josean Ramos-Hernanz ◽  
Necmi Altın ◽  
Saban Ozdemir ◽  
Erol Kurt ◽  
...  

2020 ◽  
Vol 190 ◽  
pp. 00016
Author(s):  
Imam Abadi ◽  
Qurrotul Uyuniyah ◽  
Dwi Nur Fitriyanah ◽  
Yahya Jani ◽  
Kamaruddin Abdullah

World energy consumption increases with time, so that occur an energy imbalance. Many breakthroughs have developed to utilize renewable energy. The photovoltaic system is one of the easy-to-use renewable energies. The power conversion from PV fixed is still low, so the PV system is designed using the active dual-axis solar tracker. The PV tracker position can be adjusted to change the sun position to get maximum efficiency. The active dual-axis solar tracker system is integrated with the maximum power point tracking (MPPT) algorithm to keep PV operating at a maximum power point even though input variations change. The active dual-axis solar tracker system integrated with the maximum power point tracking (MPPT) algorithm to keep PV operating at a maximum power point even though input variations change. Tracking test simulation had done by comparing the output power of a fixed PV system with the active dual-axis solar tracker. Type-2 fuzzy logic based MPPT successfully increased the average output power by 10.48 % with the highest increase of 17.48 % obtained at 15:00 West Indonesia Time (GMT+7). The difference in power from a fixed PV system with the active dual-axis solar tracker of 36.08 W is from the output power worth 206.3 to 242.4 W.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4326
Author(s):  
Nguyen Van Tan ◽  
Nguyen Binh Nam ◽  
Nguyen Huu Hieu ◽  
Le Kim Hung ◽  
Minh Quan Duong ◽  
...  

In microgrids, distributed generators that cannot be dispatched, such as a photovoltaic system, need to control their output power at the maximum power point. The fluctuation of their output power should be minimized with the support of the maximum power point tracking algorithm under the variation of ambient conditions. In this paper, a new maximum power point tracking method based on the parameters of power deviation (ΔPPV), voltage difference (ΔVPV), and duty cycle change (ΔD) is proposed for photovoltaic systems. The presented algorithm achieves the following good results: (i) when the solar radiance is fixed, the output power is stable around the maximum power point; (ii) when the solar radiance is rapidly changing, the generated power is always in the vicinity of maximum power points; (iii) the effectiveness of energy conversion is comparable to that of intelligent algorithms. The proposed algorithm is presented and compared with traditional and intelligent maximum power point tracking algorithms on the simulation model by MATLAB/Simulink under different radiation scenarios to prove the effectiveness of the proposed method.


2019 ◽  
Vol 3 (2) ◽  
pp. 83
Author(s):  
Totok Dewantoro ◽  
Gezaq Abror ◽  
Gilang Eka Vigo Astafir Akbar

Pada penelitian ini akan dirancang sebuah solar electric sprayer (SES) yang hemat energi. Rancangan ini terdiri dari solar panel (PV), rangkaian maximum power point tracking (MPPT), dan sebuah konverter. Untuk memaksimalkan power dari solar panel, rancangan ini dilengkapi dengan MPPT yang mampubekerja pada kondisi terbayang-bayang sebagian (partial shaded) apabila tempat yang digunakan tidak memungkinkan untuk memperoleh radiasi matahari yang sempurna. Algoritma yang digunakan pada pembuatan MPPT ini menggunakan fuzzy expert system (FES). Dari hasil pengujian didapatkan daya optimal PV hanya sekitar 75% dengan effisiensi konverter 80% hingga 89% tanpa terjadi saturasi, namun terdapat penurunan effisiensi sekitar 42% apabila dutycycle dibawah 40%. Dengan demikian prototype mesin semprot listrik bertenaga surya sebagai pengganti mesin semprot manual yang sudah tersedia dapat diterapkan. 


Sign in / Sign up

Export Citation Format

Share Document