scholarly journals Voltammetric Behaviour and Analysis of Fluchloralin

2010 ◽  
Vol 7 (4) ◽  
pp. 1605-1611 ◽  
Author(s):  
K. Balaji ◽  
C. Sridevi ◽  
N. Ananda Kumar Reddy ◽  
K. Mohana Muni Sidda Reddy ◽  
C. Suresh Reddy

The electrochemical reduction behavior of fluchloralin has been studied by D.C.polarography, differential pulse polarography, millicoulometry and controlled potential electrolysis in the universal buffers ranging from 2.0 to 12.0. Kinetic parameters were evaluated and a reduction mechanism was proposed. A simple and rapid differential pulse polarographic method has been developed for the determination of fluchloralin in formulations, grains, soils and spiked water samples. The lower detection limit was found to be 1.5×10-8M. Both the standard addition and calibration methods were used for the analytical measurements.

2015 ◽  
Vol 13 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Slavica Blagojevic ◽  
Ferenc Pastor ◽  
Ivan Boric ◽  
Natasa Eric ◽  
Desanka Suznjevic

Commercially formulated anti-dandruff shampoos contain zinc pyrithione (ZPT) as an active ingredient that has antifungal, antibacterial and anti-seborrheic properties. The determination of ZPT concentration in commercial anti-dandruff shampoos by differential pulse polarography (DPP) was based on the electrochemical reduction of zinc ions in ammoniacal buffer pH 10.2, and the linear dependence of the reduction differential pulse peak current at the potential -1.33 V vs. concentration of zinc. Using the calibration curve method, it was found that the range of linearity for the determination of zinc concentration was from 1.28 x 10?5 to 1.39 x 10-4 mol L-1 (linear regression equation: I = - 0.097 + 6.635 x 105c). Surface active ingredients and micro-components in the shampoos did not exert a polarographic interference for the determination of zinc and did not affect the indirect determination of the content of the active ingredient ZPT. The concentrations of zinc in the analyzed anti-dandruff shampoo samples were determined by the standard addition method, resulting in 4.20 x 10-2 mol L-1, 1.76 x 10-1 mol L-1 and 1.82 x 10-1 mol L-1. The results of DPP determinations of zinc and ZPT show that the content of ZPT was 0.28%, 1.15% i.e. 1.19% and was below the maximum recommended level of ZPT in anti-dandruff shampoos. This simple and sensitive differential pulse polarography method is suitable for a routine and rapid control of the active ingredient content, as well as for the quality control of anti-dandruff shampoos.


2002 ◽  
Vol 85 (3) ◽  
pp. 731-735 ◽  
Author(s):  
Neelam Y Sreedhar ◽  
Thommandru R Babu ◽  
Kethamreddy Samatha ◽  
Devarapalli Sujatha ◽  
Thenepalli Thriveni

Abstract The dicarboximide fungicide procymidone was studied systematically by using direct current polarography, cyclic voltammetry, differential pulse polarography (DPP), controlled potential electrolysis, and millicoulometry in the universal buffer medium with dimethylformamide as the solvent. Procymidone exhibited a single well-defined polarographic wave in the pH range 2.0–6.0, leading to the formation of the hydroxy compound. The overall reduction process was diffusion-controlled and adsorption-free. The variation of half-wave potential with pH, the concentration of the analyte, and other experimental conditions are described. The reduction mechanism proposed is an overall 4-electron process, in which the dicarboximide group is reduced. DPP was used to determine procymidone in agricultural formulations and wine at the optimum conditions found; a detection limit of 2.4 × 10−9M was estimated. The results obtained by the proposed method were also compared with those obtained by other methods.


1983 ◽  
Vol 48 (10) ◽  
pp. 2903-2908 ◽  
Author(s):  
Viktor Vrabec ◽  
Oldřich Vrána ◽  
Vladimír Kleinwächter

A method is described for determining total platinum content in urine, blood plasma and tissues of patients or experimental animals receiving cis-dichlorodiamineplatinum(II). The method is based on drying and combustion of the biological material in a muffle furnace. The product of the combustion is dissolved successively in aqua regia, hydrochloric acid and ethylenediamine. The resulting platinum-ethylenediamine complex yields a catalytic current at a dropping mercury electrode allowing to determine platinum by differential pulse polarography. Platinum levels of c. 50-1 000 ng per ml of the biological fluid or per 0.5 g of a tissue can readily be analyzed with a linear calibration.


1985 ◽  
Vol 50 (3) ◽  
pp. 712-725 ◽  
Author(s):  
Jiří Barek ◽  
Lubomír Kelnar

The polarographic reduction of N,N-dimethyl-4-amino-4'-hydroxyazobenzene in water-methanol medium was investigated. Evidence is presented for adsorption of the depolarizer on the electrode, and a reduction mechanism is proposed. Conditions are indicated for the determination of this compound in the concentration range 10-4-10-6 mol/l by d.c. polarography, 10-5 to 3 . 10-7 mol/l by Tast polarography, and 10-5-3 . 10-8 mol/l by differential pulse polarography.


1986 ◽  
Vol 51 (11) ◽  
pp. 2466-2472 ◽  
Author(s):  
Jiří Barek ◽  
Antonín Berka ◽  
Ludmila Dempírová ◽  
Jiří Zima

Conditions were found for the determination of 6-mercaptopurine (I) and 6-thioguanine (II) by TAST polarography, differential pulse polarography and fast-scan differential pulse voltammetry at a hanging mercury drop electrode. The detection limits were 10-6, 8 . 10-8, and 6 . 10-8 mol l-1, respectively. A further lowering of the detection limit to 2 . 10-8 mol l-1 was attained by preliminary accumulation of the determined substances at the surface of a hanging mercury drop.


1990 ◽  
Vol 55 (6) ◽  
pp. 1508-1517 ◽  
Author(s):  
Jiří Barek ◽  
Dagmar Civišová ◽  
Ashutosh Ghosh ◽  
Jiří Zima

The polarographic reduction of the title azo dye was studied and optimal conditions were found for its analytical utilization in the concentration range 1 . 10-6 - 1 . 10-7 mol l-1 using differential pulse polarography and 1 . 10-6 - 1 . 10-8 mol l-1 using fast scan differential pulse voltammetry or linear scan voltammetry at a hanging mercury drop electrode. When the latter technique is combined with adsorptive accumulation of the studied substance on the surface of the hanging mercury drop, the determination limit can be further decreased to 3 . 10-9 mol l-1.


1991 ◽  
Vol 56 (7) ◽  
pp. 1434-1445 ◽  
Author(s):  
Jiří Barek ◽  
Ivana Švagrová ◽  
Jiří Zima

Polarographic reduction of the genotoxic N,N’-dinitrosopiperazine was studied and its mechanism was suggested. Optimum conditions were established for the determination of this substance by tast polarography over the concentration region of 1 . 10-3 to 1 . 10-6 mol l-1 and by differential pulse polarography on the conventional dropping mercury electrode or by fast scan differential pulse voltammetry and linear sweep voltammetry on a hanging mercury drop electrode over the concentration region of 1 . 10-3 to 1 . 10-7 mol l-1. Attempts at increasing further the sensitivity via adsorptive accumulation of the analyte on the surface of the hanging mercury drop failed. The methods are applicable to the testing of the chemical efficiency of destruction of the title chemical carcinogen based on its oxidation with potassium permanganate in acid solution.


1992 ◽  
Vol 57 (11) ◽  
pp. 2272-2278 ◽  
Author(s):  
Václav Koula ◽  
Daria Kučová ◽  
Jiří Gasparič

The combination of ion-pair extraction and differential pulse polarography is shown to be a method suitable for the determination of 10-7 mol l-1 concentrations of organic bases of quaternary ammonium compounds. Orange II (4-[2-hydroxy-1-naphtyl]azobenzenesulfonic acid) was found to be an appropriate polarographically active counter-ion. The proposed method was used for the determination of tetrapentylammonium bromide (as model compound), Septonex ([1-(ethoxycarbonyl)-pentadecyl]trimethylammonium bromide) and codeine.


1996 ◽  
Vol 61 (3) ◽  
pp. 333-341
Author(s):  
Jiří Barek ◽  
Roman Hrnčíř ◽  
Josino C. Moreira ◽  
Jiří Zima

The polarographic behaviour was studied for 6-β-D-glucopyranosyloxy-7-hydroxycoumarin, a natural compound serving as an optical whitening agent. The substance can be quantitated by tast polarography, differential pulse polarography using a conventional dropping mercury electrode, and differential pulse polarography using a static mercury drop electrode over the regions of 20-1 000, 2-1 000, and 0.2-1 000 μmol l-1, respectively. The methods developed for the quantitation of the compound were applied to its direct determination in a raw product.


Sign in / Sign up

Export Citation Format

Share Document