scholarly journals Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Kentaro Nagamine

We examine the past and current work on the star formation (SF) histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

1983 ◽  
Vol 6 ◽  
pp. 179-186
Author(s):  
J. R. Mould

This review will take the linear view of the history of stellar systems. Thus the last billion years of a dwarf galaxy’s development receives no special attention. A considerable amount of information has recently come to light on the intermediate age populations of dwarf galaxies.


1999 ◽  
Vol 190 ◽  
pp. 470-472
Author(s):  
Eva K. Grebel ◽  
Wolfgang Brandner

A new age calibration of Cepheids and supergiants is used to study the large-scale recent star formation history of the LMC and the SMC. We find evidence for migration of star formation along the LMC bar as well as for the existence of long-lived (≈ 200 Myr) extended star-forming features.


2014 ◽  
Vol 789 (2) ◽  
pp. 96 ◽  
Author(s):  
Hakim Atek ◽  
Jean-Paul Kneib ◽  
Camilla Pacifici ◽  
Matthew Malkan ◽  
Stephane Charlot ◽  
...  

2018 ◽  
Vol 14 (S344) ◽  
pp. 429-436
Author(s):  
Hakim Atek

AbstractDwarf galaxies represent the dominant population at high redshift and they most likely contributed in great part to star formation history of the Universe and cosmic reionization. The importance of dwarf galaxies at high redshift has been mostly recognized in the last decade due to large progress in observing facilities allowing deep galaxy surveys to identify low-mass galaxies. This population appear to have extreme emission lines and ionizing properties that challenge stellar population models. Star formation follows a stochastic process in these galaxies, which has important implication on the ionizing photon production and its escape fraction whose measurements are challenging for both simulations and observations. Outstanding questions include: what are the physical properties at the origin of such extreme properties? What are the smallest dark matter halos that host star formation? Are dwarf galaxies responsible for cosmic reionization?


2013 ◽  
Vol 778 (2) ◽  
pp. 103 ◽  
Author(s):  
Sebastian L. Hidalgo ◽  
Matteo Monelli ◽  
Antonio Aparicio ◽  
Carme Gallart ◽  
Evan D. Skillman ◽  
...  

2008 ◽  
Vol 25 (3) ◽  
pp. 116-120 ◽  
Author(s):  
Jason Harris ◽  
Dennis Zaritsky

AbstractWe present a detailed reconstruction of the star-formation history of the Constellation III region in the Large Magellanic Cloud, to constrain the formation mechanism of this enigmatic feature. Star formation in Constellation III seems to have taken place during two distinct epochs: there is the 8–15 Myr epoch that had previously been recognized, but we also see strong evidence for a separate ‘burst’ of star formation 25–30 Myr ago. The ‘super-supernova' or GRB blast wave model for the formation of Constellation III is difficult to reconcile with such an extended, two-epoch star formation history, because the shock wave should have induced star formation throughout the structure simultaneously, and any unconsumed gas would quickly be dissipated, leaving nothing from which to form a subsequent burst of activity. We propose a ‘truly stochastic’ self-propagating star formation model, distinct from the canonical model in which star formation proceeds in a radially directed wave from the center of Constellation III to its perimeter. As others have noted, and we now confirm, the bulk age gradients demanded by such a model are simply not present in Constellation III. In our scenario, the prestellar gas is somehow pushed into these large-scale arc structures, without simultaneously triggering immediate and violent star formation throughout the structure. Rather, star formation proceeds in the arc according to the local physical conditions of the gas. Self-propagating star formation is certainly possible, but in a truly stochastic manner, without a directed, large scale pattern.


2021 ◽  
Vol 909 (2) ◽  
pp. 192 ◽  
Author(s):  
C. Gallart ◽  
M. Monelli ◽  
T. Ruiz-Lara ◽  
A. Calamida ◽  
S. Cassisi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document