scholarly journals Asymptotic Stability for a Class of Nonlinear Difference Equations

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Chang-you Wang ◽  
Shu Wang ◽  
Zhi-wei Wang ◽  
Fei Gong ◽  
Rui-fang Wang

We study the global asymptotic stability of the equilibrium point for the fractional difference equationxn+1=(axn-lxn-k)/(α+bxn-s+cxn-t),n=0,1,…, where the initial conditionsx-r,x-r+1,…,x1,x0are arbitrary positive real numbers of the interval(0,α/2a),l,k,s,tare nonnegative integers,r=max⁡⁡{l,k,s,t}andα,a,b,care positive constants. Moreover, some numerical simulations are given to illustrate our results.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Brett ◽  
E. J. Janowski ◽  
M. R. S. Kulenović

Consider the difference equation xn+1=(α+∑i=0kaixn-i)/(β+∑i=0kbixn-i),  n=0,1,…, where all parameters α,β,ai,bi,  i=0,1,…,k, and the initial conditions xi,  i∈{-k,…,0} are nonnegative real numbers. We investigate the asymptotic behavior of the solutions of the considered equation. We give easy-to-check conditions for the global stability and global asymptotic stability of the zero or positive equilibrium of this equation.


2018 ◽  
Vol 2018 ◽  
pp. 1-22
Author(s):  
M. R. S. Kulenović ◽  
S. Moranjkić ◽  
M. Nurkanović ◽  
Z. Nurkanović

We investigate the global asymptotic stability of the following second order rational difference equation of the form xn+1=Bxnxn-1+F/bxnxn-1+cxn-12,  n=0,1,…, where the parameters B, F, b, and c and initial conditions x-1 and x0 are positive real numbers. The map associated with this equation is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on the parametric space. In some cases, we prove that local asymptotic stability of the unique equilibrium point implies global asymptotic stability. Also, we show that considered equation exhibits the Naimark-Sacker bifurcation resulting in the existence of the locally stable periodic solution of unknown period.


2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
S. Atawna ◽  
R. Abu-Saris ◽  
E. S. Ismail ◽  
I. Hashim

This is a continuation part of our investigation in which the second order nonlinear rational difference equation xn+1=(α+βxn+γxn-1)/(A+Bxn+Cxn-1), n=0,1,2,…, where the parameters A≥0 and B, C, α, β, γ are positive real numbers and the initial conditions x-1, x0 are nonnegative real numbers such that A+Bx0+Cx-1>0, is considered. The first part handled the global asymptotic stability of the hyperbolic equilibrium solution of the equation. Our concentration in this part is on the global asymptotic stability of the nonhyperbolic equilibrium solution of the equation.


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
S. Atawna ◽  
R. Abu-Saris ◽  
E. S. Ismail ◽  
I. Hashim

Our goal in this paper is to investigate the global asymptotic stability of the hyperbolic equilibrium solution of the second order rational difference equation xn+1=α+βxn+γxn-1/A+Bxn+Cxn-1, n=0,1,2,…, where the parameters A≥0 and B, C, α, β, γ are positive real numbers and the initial conditions x-1, x0 are nonnegative real numbers such that A+Bx0+Cx-1>0. In particular, we solve Conjecture 5.201.1 proposed by Camouzis and Ladas in their book (2008) which appeared previously in Conjecture 11.4.2 in Kulenović and Ladas monograph (2002).


2020 ◽  
Vol 23 (2) ◽  
pp. 571-590
Author(s):  
Mei Wang ◽  
Baoguo Jia ◽  
Feifei Du ◽  
Xiang Liu

AbstractIn this paper, an integral inequality and the fractional Halanay inequalities with bounded time delays in fractional difference are investigated. By these inequalities, the asymptotical stability conditions of Caputo and Riemann-Liouville fractional difference equation with bounded time delays are obtained. Several examples are presented to illustrate the results.


2021 ◽  
Vol 71 (4) ◽  
pp. 903-924
Author(s):  
Yacine Halim ◽  
Asma Allam ◽  
Zineb Bengueraichi

Abstract In this paper, we study the periodicity, the boundedness of the solutions, and the global asymptotic stability of the positive equilibrium of the system of p nonlinear difference equations x n + 1 ( 1 ) = A + x n − 1 ( 1 ) x n ( p ) , x n + 1 ( 2 ) = A + x n − 1 ( 2 ) x n ( p ) , … , x n + 1 ( p − 1 ) = A + x n − 1 ( p − 1 ) x n ( p ) , x n + 1 ( p ) = A + x n − 1 ( p ) x n ( p − 1 ) $$\begin{equation*}x^{(1)}_{n+1}=A+\dfrac{x^{(1)}_{n-1}}{x^{(p)}_{n}},\quad x^{(2)}_{n+1}=A+\dfrac{x^{(2)}_{n-1}}{x^{(p)}_{n}},\quad\ldots,\quad x^{(p-1)}_{n+1}=A+\dfrac{x^{(p-1)}_{n-1}}{x^{(p)}_{n}},\quad x^{(p)}_{n+1}=A+\dfrac{x^{(p)}_{n-1}}{x^{(p-1)}_{n}} \end{equation*} $$ where n ∈ ℕ0, p ≥ 3 is an integer, A ∈ (0, +∞) and the initial conditions x − 1 ( j ) $x_{-1}^{(j)}$ , x 0 ( j ) $x_{0}^{(j)}$ , j = 1, 2, …, p are positive numbers.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
A. M. Alotaibi ◽  
M. S. M. Noorani ◽  
M. A. El-Moneam

The structure of the solutions for the system nonlinear difference equations xn+1=ynyn-2/(xn-1+yn-2), yn+1=xnxn-2/(±yn-1±xn-2), n=0,1,…, is clarified in which the initial conditions x-2, x-1, x0, y-2, y-1, y0 are considered as arbitrary positive real numbers. To exemplify the theoretical discussion, some numerical examples are presented.


2018 ◽  
Vol 21 (2) ◽  
pp. 354-375 ◽  
Author(s):  
Guo–Cheng Wu ◽  
Dumitru Baleanu

AbstractWe revisit motivation of the fractional difference equations and some recent applications to image encryption. Then stability of impulsive fractional difference equations is investigated in this paper. The fractional sum equation is considered and impulsive effects are introduced into discrete fractional calculus. A class of impulsive fractional difference equations are proposed. A discrete comparison principle is given and asymptotic stability of nonlinear fractional difference equation are discussed. Finally, an impulsive Mittag–Leffler stability is defined. The numerical result is provided to support the analysis.


2020 ◽  
Vol 23 (3) ◽  
pp. 886-907
Author(s):  
Syed Sabyel Haider ◽  
Mujeeb Ur Rehman

AbstractIn this article, we establish a technique for transforming arbitrary real order delta difference equations with impulses to corresponding summation equations. The technique is applied to non-integer order delta difference equation with some boundary conditions. Furthermore, the summation formulation for impulsive fractional difference equation is utilized to construct fixed point operator which in turn are used to discuss existence of solutions.


Sign in / Sign up

Export Citation Format

Share Document