scholarly journals Global Asymptotic Stability for Linear Fractional Difference Equation

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Brett ◽  
E. J. Janowski ◽  
M. R. S. Kulenović

Consider the difference equation xn+1=(α+∑i=0kaixn-i)/(β+∑i=0kbixn-i),  n=0,1,…, where all parameters α,β,ai,bi,  i=0,1,…,k, and the initial conditions xi,  i∈{-k,…,0} are nonnegative real numbers. We investigate the asymptotic behavior of the solutions of the considered equation. We give easy-to-check conditions for the global stability and global asymptotic stability of the zero or positive equilibrium of this equation.

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Chang-you Wang ◽  
Shu Wang ◽  
Zhi-wei Wang ◽  
Fei Gong ◽  
Rui-fang Wang

We study the global asymptotic stability of the equilibrium point for the fractional difference equationxn+1=(axn-lxn-k)/(α+bxn-s+cxn-t),n=0,1,…, where the initial conditionsx-r,x-r+1,…,x1,x0are arbitrary positive real numbers of the interval(0,α/2a),l,k,s,tare nonnegative integers,r=max⁡⁡{l,k,s,t}andα,a,b,care positive constants. Moreover, some numerical simulations are given to illustrate our results.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
M. R. S. Kulenović ◽  
Connor O’Loughlin ◽  
E. Pilav

We present the bifurcation results for the difference equation x n + 1 = x n 2 / a x n 2 + x n − 1 2 + f where a and f are positive numbers and the initial conditions x − 1 and x 0 are nonnegative numbers. This difference equation is one of the perturbations of the sigmoid Beverton–Holt difference equation, which is a major mathematical model in population dynamics. We will show that this difference equation exhibits transcritical and Neimark–Sacker bifurcations but not flip (period-doubling) bifurcation since this difference equation cannot have period-two solutions. Furthermore, we give the asymptotic approximation of the invariant manifolds, stable, unstable, and center manifolds of the equilibrium solutions. We give the necessary and sufficient conditions for global asymptotic stability of the zero equilibrium as well as sufficient conditions for global asymptotic stability of the positive equilibrium.


2018 ◽  
Vol 2018 ◽  
pp. 1-22
Author(s):  
M. R. S. Kulenović ◽  
S. Moranjkić ◽  
M. Nurkanović ◽  
Z. Nurkanović

We investigate the global asymptotic stability of the following second order rational difference equation of the form xn+1=Bxnxn-1+F/bxnxn-1+cxn-12,  n=0,1,…, where the parameters B, F, b, and c and initial conditions x-1 and x0 are positive real numbers. The map associated with this equation is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on the parametric space. In some cases, we prove that local asymptotic stability of the unique equilibrium point implies global asymptotic stability. Also, we show that considered equation exhibits the Naimark-Sacker bifurcation resulting in the existence of the locally stable periodic solution of unknown period.


2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
S. Atawna ◽  
R. Abu-Saris ◽  
E. S. Ismail ◽  
I. Hashim

This is a continuation part of our investigation in which the second order nonlinear rational difference equation xn+1=(α+βxn+γxn-1)/(A+Bxn+Cxn-1), n=0,1,2,…, where the parameters A≥0 and B, C, α, β, γ are positive real numbers and the initial conditions x-1, x0 are nonnegative real numbers such that A+Bx0+Cx-1>0, is considered. The first part handled the global asymptotic stability of the hyperbolic equilibrium solution of the equation. Our concentration in this part is on the global asymptotic stability of the nonhyperbolic equilibrium solution of the equation.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Senada Kalabušić ◽  
M. R. S. Kulenović ◽  
M. Mehuljić

We investigate the local stability and the global asymptotic stability of the difference equationxn+1=αxn2+βxnxn-1+γxn-1/Axn2+Bxnxn-1+Cxn-1,n=0,1,…with nonnegative parameters and initial conditions such thatAxn2+Bxnxn-1+Cxn-1>0, for alln≥0. We obtain the local stability of the equilibrium for all values of parameters and give some global asymptotic stability results for some values of the parameters. We also obtain global dynamics in the special case, whereβ=B=0, in which case we show that such equation exhibits a global period doubling bifurcation.


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
S. Atawna ◽  
R. Abu-Saris ◽  
E. S. Ismail ◽  
I. Hashim

Our goal in this paper is to investigate the global asymptotic stability of the hyperbolic equilibrium solution of the second order rational difference equation xn+1=α+βxn+γxn-1/A+Bxn+Cxn-1, n=0,1,2,…, where the parameters A≥0 and B, C, α, β, γ are positive real numbers and the initial conditions x-1, x0 are nonnegative real numbers such that A+Bx0+Cx-1>0. In particular, we solve Conjecture 5.201.1 proposed by Camouzis and Ladas in their book (2008) which appeared previously in Conjecture 11.4.2 in Kulenović and Ladas monograph (2002).


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Lin-Xia Hu ◽  
Xiu-Mei Jia

The main goal of this paper is to investigate the global asymptotic behavior of the difference equationxn+1=β1xn/A1+yn,yn+1=β2xn+γ2yn/xn+yn,n=0,1,2,…withβ1,β2,γ2,A1∈(0,∞)and the initial value(x0,y0)∈[0,∞)×[0,∞)such thatx0+y0≠0. The major conclusion shows that, in the case whereγ2<β2, if the unique positive equilibrium(x-,y-)exists, then it is globally asymptotically stable.


2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
E. M. E. Zayed ◽  
A. B. Shamardan ◽  
T. A. Nofal

We study the global stability, the periodic character, and the boundedness character of the positive solutions of the difference equation , , in the two cases: (i) ; (ii) , where the coefficients and, and the initial conditions are real numbers. We show that the positive equilibrium of this equation is a global attractor with a basin that depends on certain conditions posed on the coefficients of this equation.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Guo-Mei Tang ◽  
Lin-Xia Hu ◽  
Gang Ma

We consider the higher-order nonlinear difference equation with the parameters, and the initial conditions are nonnegative real numbers. We investigate the periodic character, invariant intervals, and the global asymptotic stability of all positive solutions of the above-mentioned equation. In particular, our results solve the open problem introduced by Kulenović and Ladas in their monograph (see Kulenović and Ladas, 2002).


Sign in / Sign up

Export Citation Format

Share Document