scholarly journals Resonance and Nonresonance Periodic Value Problems of First-Order Differential Systems

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Fengqin Zhang ◽  
Jurang Yan

Resonance and nonresonance periodic value problems of first-order differential systems are studied. Several new existence and uniqueness of solutions for the above problems are obtained. To establish such results sufficient conditions of limit forms are given. A necessary and sufficient condition for existence of nontrivial solution is also proved.

1989 ◽  
Vol 39 (2) ◽  
pp. 161-165
Author(s):  
Jurang Yan

A necessary and sufficient condition is obtained for a first order linear delay differential inequality to be oscillatory. Our main result improves and extends some known results.


1973 ◽  
Vol 8 (1) ◽  
pp. 133-135 ◽  
Author(s):  
David Lowell Lovelady

A condition which was previously found to be sufficient for global existence and uniqueness of solutions of an ordinary differential equation is shown herein to be necessary, if it is also required that solutions are exponentially bounded.


1989 ◽  
Vol 40 (3) ◽  
pp. 421-424
Author(s):  
I. P. Stavroulakis

Consider the first order differential equation (1) , where pi, and τi, for i = 1,…,n, are positive constants. To find necessary and sufficient conditions, in terms of the coefficients and the delays only, under which all solutions of (1) oscillate, is a problem of great importence. In a recent paper, Bowcock and Yu claimed that is a necessary and sufficient condition for all solutions of (1) to be oscillatory. In this paper a counterexample shows that the above result is not valid and the error in this paper is indicated.


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


2000 ◽  
Vol 11 (03) ◽  
pp. 515-524
Author(s):  
TAKESI OKADOME

The paper deals with learning in the limit from positive data. After an introduction and overview of earlier results, we strengthen a result of Sato and Umayahara (1991) by establishing a necessary and sufficient condition for the satisfaction of Angluin's (1980) finite tell-tale condition. Our other two results show that two notions introduced here, the finite net property and the weak finite net property, lead to sufficient conditions for learning in the limit from positive data. Examples not solvable by earlier methods are also given.


Pythagoras ◽  
2010 ◽  
Vol 0 (71) ◽  
Author(s):  
Shunmugam Pillay ◽  
Poobhalan Pillay

The centre of mass G of a triangle has the property that the rays to the vertices from G sweep out triangles having equal areas. We show that such points, termed equipartitioning points in this paper, need not exist in other polygons. A necessary and sufficient condition for a quadrilateral to have an equipartitioning point is that one of its diagonals bisects the other. The general theorem, namely, necessary and sufficient conditions for equipartitioning points for arbitrary polygons to exist, is also stated and proved. When this happens, they are in general, distinct from the centre of mass. In parallelograms, and only in them, do the two points coincide.


Author(s):  
Lu Wudu

AbstractConsider the nonlinear neutral equationwhere pi(t), hi(t), gj(t), Q(t) Є C[t0, ∞), limt→∞hi(t) = ∞, limt→∞gj(t) = ∞ i Є Im = {1, 2, …, m}, j Є In = {1, 2, …, n}. We obtain a necessary and sufficient condition (2) for this equation to have a nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorems 5 and 6) or to have a bounded nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorem 7).


2021 ◽  
Vol 2 (2) ◽  
pp. 30-37
Author(s):  
Alaa A. Abdallah ◽  
A. A. Navlekar ◽  
Kirtiwant P. Ghadle

In this paper, we study the relationship between Cartan's second curvature tensor $P_{jkh}^{i}$ and $(h) hv-$torsion tensor $C_{jk}^{i}$ in sense of Berwald. Moreover, we discuss the necessary and sufficient condition for some tensors which satisfy a recurrence property in $BC$-$RF_{n}$, $P2$-Like-$BC$-$RF_{n}$, $P^{\ast }$-$BC$-$RF_{n}$ and $P$-reducible-$BC-RF_{n}$.


1972 ◽  
Vol 18 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Ian Anderson

A graph G is said to possess a perfect matching if there is a subgraph of G consisting of disjoint edges which together cover all the vertices of G. Clearly G must then have an even number of vertices. A necessary and sufficient condition for G to possess a perfect matching was obtained by Tutte (3). If S is any set of vertices of G, let p(S) denote the number of components of the graph G – S with an odd number of vertices. Then the conditionis both necessary and sufficient for the existence of a perfect matching. A simple proof of this result is given in (1).


Sign in / Sign up

Export Citation Format

Share Document