scholarly journals A Limit Theorem for Random Products of Trimmed Sums of i.i.d. Random Variables

2011 ◽  
Vol 2011 ◽  
pp. 1-13
Author(s):  
Fa-mei Zheng

Let be a sequence of independent and identically distributed positive random variables with a continuous distribution function , and has a medium tail. Denote and , where , , and is a fixed constant. Under some suitable conditions, we show that , as , where is the trimmed sum and is a standard Wiener process.

1987 ◽  
Vol 102 (2) ◽  
pp. 329-349 ◽  
Author(s):  
Philip S. Griffin ◽  
William E. Pruitt

Let X, X1, X2,… be a sequence of non-degenerate i.i.d. random variables with common distribution function F. For 1 ≤ j ≤ n, let mn(j) be the number of Xi satisfying either |Xi| > |Xj|, 1 ≤ i ≤ n, or |Xi| = |Xj|, 1 ≤ i ≤ j, and let (r)Xn = Xj if mn(j) = r. Thus (r)Xn is the rth largest random variable in absolute value from amongst X1, …, Xn with ties being broken according to the order in which the random variables occur. Set (r)Sn = (r+1)Xn + … + (n)Xn and write Sn for (0)Sn. We will refer to (r)Sn as a trimmed sum.


1995 ◽  
Vol 32 (4) ◽  
pp. 982-990 ◽  
Author(s):  
Ishay Weissman

Records from are analyzed, where {Yj} is an independent sequence of random variables. Each Yj has a continuous distribution function Fj = Fλj for some distribution F and some λ j > 0. We study records, record times and related quantities for this sequence. Depending on the sequence of powers , a wide spectrum of behaviour is exhibited.


1970 ◽  
Vol 7 (02) ◽  
pp. 432-439 ◽  
Author(s):  
William E. Strawderman ◽  
Paul T. Holmes

Let X 1, X2, X 3 , ··· be independent, identically distributed random variables on a probability space (Ω, F, P); and with a continuous distribution function. Let the sequence of indices {Vr } be defined as Also define The following theorem is due to Renyi [5].


2005 ◽  
Vol 37 (03) ◽  
pp. 765-780 ◽  
Author(s):  
N. Balakrishnan ◽  
A.G. Pakes ◽  
A. Stepanov

Let X 1,X 2,… be a sequence of independent and identically distributed random variables with some continuous distribution function F. Let L(n) and X(n) denote the nth record time and the nth record value, respectively. We refer to the variables X i as near-nth-record observations if X i ∈(X(n)-a,X(n)], with a>0, and L(n)<i<L(n+1). In this work we study asymptotic properties of the number of near-record observations. We also discuss sums of near-record observations.


1967 ◽  
Vol 4 (2) ◽  
pp. 313-329 ◽  
Author(s):  
C. L. Mallows

Let U denote the set of all integers, and suppose that Y = {Yu; u ∈ U} is a process of standardized, independent and identically distributed random variables with finite third moment and with a common absolutely continuous distribution function (d.f.) G (·). Let a = {au; u ∈ U} be a sequence of real numbers with Σuau2 = 1. Then Xu = ΣwawYu–w defines a stationary linear process X = {Xu; u ɛ U} with E(Xu) = 0, E(Xu2) = 1 for u ∊ U. Let F(·) be the d.f. of X0. We prove that if maxu |au| is small, then (i) for each w, Xw is close to Gaussian in the sense that ∫∞−∞(F(y) − Φ(y))2dy ≦ g maxu |au | where Φ(·) is the standard Gaussian d.f., and g depends only on G(·); (ii) for each finite set (w1, … wn), (Xw1, … Xwn) is close to Gaussian in a similar sense; (iii) the process X is close to Gaussian in a somewhat restricted sense. Several properties of the measures of distance from Gaussianity employed are investigated, and the relation of maxu|au| to the bandwidth of the filter a is studied.


2002 ◽  
Vol 18 (1) ◽  
pp. 119-139 ◽  
Author(s):  
Qiying Wang ◽  
Yan-Xia Lin ◽  
Chandra M. Gulati

Let Xt be a linear process defined by Xt = [sum ]k=0∞ ψkεt−k, where {ψk, k ≥ 0} is a sequence of real numbers and {εk, k = 0,±1,±2,...} is a sequence of random variables. Two basic results, on the invariance principle of the partial sum process of the Xt converging to a standard Wiener process on [0,1], are presented in this paper. In the first result, we assume that the innovations εk are independent and identically distributed random variables but do not restrict [sum ]k=0∞ |ψk| < ∞. We note that, for the partial sum process of the Xt converging to a standard Wiener process, the condition [sum ]k=0∞ |ψk| < ∞ or stronger conditions are commonly used in previous research. The second result is for the situation where the innovations εk form a martingale difference sequence. For this result, the commonly used assumption of equal variance of the innovations εk is weakened. We apply these general results to unit root testing. It turns out that the limit distributions of the Dickey–Fuller test statistic and Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test statistic still hold for the more general models under very weak conditions.


1967 ◽  
Vol 4 (01) ◽  
pp. 206-208 ◽  
Author(s):  
Marcel F. Neuts

If Δ r denotes the waitingtime between the (r − 1)st and the rth upper record in a sequence of independent, identically distributed random variables with a continuous distribution, then it is shown that Δ r satisfies the weak law of large numbers and a central limit theorem. This theorem supplements those of Foster and Stuart and Rényi, who investigated the index Vr of the rth upper record. Qualitatively the theorems establish the intuitive fact that for higher records, the waitingtime between the last two records outweighs even the total waitingtime for previous records. This explains also why the asymptotic normality of logVr is very inadequate for approximation purposes—Barton and Mallows.


1992 ◽  
Vol 29 (3) ◽  
pp. 575-586 ◽  
Author(s):  
Mohamed Berred

Let {Xn, n ≧ 1} be an i.i.d. sequence of positive random variables with a continuous distribution function having a regularly varying upper tail. Denote by {X(n), n ≧ 1} the corresponding sequence of record values. We introduce two statistics based on the sequence of successive record values and investigate their asymptotic behaviour. We also give some numerical results.


1992 ◽  
Vol 29 (03) ◽  
pp. 575-586 ◽  
Author(s):  
Mohamed Berred

Let {Xn, n ≧ 1} be an i.i.d. sequence of positive random variables with a continuous distribution function having a regularly varying upper tail. Denote by {X(n), n ≧ 1} the corresponding sequence of record values. We introduce two statistics based on the sequence of successive record values and investigate their asymptotic behaviour. We also give some numerical results.


2005 ◽  
Vol 37 (3) ◽  
pp. 765-780 ◽  
Author(s):  
N. Balakrishnan ◽  
A.G. Pakes ◽  
A. Stepanov

Let X1,X2,… be a sequence of independent and identically distributed random variables with some continuous distribution function F. Let L(n) and X(n) denote the nth record time and the nth record value, respectively. We refer to the variables Xi as near-nth-record observations if Xi∈(X(n)-a,X(n)], with a>0, and L(n)<i<L(n+1). In this work we study asymptotic properties of the number of near-record observations. We also discuss sums of near-record observations.


Sign in / Sign up

Export Citation Format

Share Document