scholarly journals Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Sonia Boscolo ◽  
Christophe Finot

The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

2006 ◽  
Vol 15 (01) ◽  
pp. 55-76
Author(s):  
S. WABNITZ

Optical devices employing photonic crystals and novel nanostructure materials may exhibit useful properties for applications to all-optical signal processing. In this work we analyze as a first example four-wave mixing of polarized beams in photonic crystal fibers. We show that by properly tuning the pump wavelength and the linear dispersion properties of the fiber one may obtain broadband parametric amplification and frequency conversion. Next we consider the in-line periodic amplification of short optical pulses by means of quantum-dot semiconductor optical amplifiers. We show by numerical simulations that pattern-free amplification of a 40 Gbit/s soliton signal at 1300 nm is possible without any inter-symbol interference or nonlinear pulse distortion caused by the fast gain dynamics.


2021 ◽  
Vol 01 ◽  
Author(s):  
Yujun Hou ◽  
Chun Jiang

Background: All-optical processing has a huge superiority in speed and efficiency than traditional optical-electrical-optical signal processing. Four-wave-mixing is an important nonlinear parametric process to achieve all-optical processing. Objective: We proposed the photonic crystal waveguide to enhance the conversion efficiency of four-wave-mixingsignificantly in practical application. Methods: We demonstrate a waveguide composed of silicon with mono-layer graphene coated as core and Si-Ge distributed periodically on both sides as cladding. By the introduction of slow light effect of Si-Ge photonic crystal and the localization effect of graphene, the conversion efficiency of four-wave-mixing has enhanced dramatically. Results: The conversion efficiency can be increased by 16dB compared with silicon waveguide and the maximum efficiency as high as -9.1dB can be achieved in the Si-Ge-Graphene photonic crystal waveguide (SGG-PhCWG).The propagation loss can be decreased as small as 0.032dB/cm. Conclusions: Numerical results of proposed SGG-PhCWGmatch well with nonlinear coupled-mode theory. This configuration offers a new physical mechanism and solution for all-optical signal processing and high efficiency nonlinear nanoscale devices.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2641-2671 ◽  
Author(s):  
Meng Liu ◽  
Zhi-Wei Wei ◽  
Ai-Ping Luo ◽  
Wen-Cheng Xu ◽  
Zhi-Chao Luo

AbstractDue to the exotic electronic and optical properties, two-dimensional (2D) materials, such as graphene, topological insulators, transition metal dichalcogenides, black phosphorus, MXenes, graphitic carbon nitride, metal-organic frameworks, and so on, have attracted enormous interest in the scientific communities dealing with electronics and photonics. Combing the 2D materials with the microfiber, the 2D material-decorated microfiber photonic devices could be assembled. They offer the advantages of a high nonlinear effect, all fiber structure, high damage threshold, and so on, which play important roles in fields of pulse shaping and all-optical signal processing. In this review, first, we introduce the fabrication methods of 2D material-decorated microfiber photonic devices. Then the pulse generation and the nonlinear soliton dynamics based on pulse shaping method in fiber lasers and all-optical signal processing based on 2D material-decorated microfiber photonic devices, such as optical modulator and wavelength converter, are summarized, respectively. Finally, the challenges and opportunities in the future development of 2D material-decorated microfiber photonic devices are given. It is believed that 2D material-decorated microfiber photonic devices will develop rapidly and open new opportunities in the related fields.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 90
Author(s):  
Yuhang Hu ◽  
Zihao Yang ◽  
Nuo Chen ◽  
Hanwen Hu ◽  
Bowen Zhang ◽  
...  

Information capacity of single-mode fiber communication systems face fundamental limitations imposed by optical nonlinearities. Spatial division multiplexing (SDM) offers a new dimension for upgrading fiber communication systems. Many enabling integrated devices, such as mode multiplexers and multimode bending with low crosstalk, have been developed. On the other hand, all-optical signal processing (AOSP) can avoid optical to electrical to optical (O–E–O) conversion, which may potentially allow for a low cost and green operation for large-scale signal processing applications. In this paper, we show that the system performance of AOSP can be pushed further by benefiting from the existing technologies developed in spatial mode multiplexing (SDM). By identifying key technologies to balance the impacts from mode-dependent loss, crosstalk and nonlinearities, three-channel 40 Gbit/s optical logic operations are demonstrated using the first three spatial modes in a single multimode waveguide. The fabricated device has a broadband four-wave mixing operation bandwidth (>20 nm) as well as high conversion efficiency (>−20 dB) for all spatial modes, showing the potential for a large-scale signal processing capacity with the combination of wavelength division multiplexing (WDM) and SDM in the future.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Azhdari ◽  
Sahel Javahernia

Abstract Increasing the speed of operation in all optical signal processing is very important. For reaching this goal one needs high speed optical devices. Optical half adders are one of the important building blocks required in optical processing. In this paper an optical half adder was proposed by combining nonlinear photonic crystal ring resonators with optical waveguides. Finite difference time domain method wase used for simulating the final structure. The simulation results confirmed that the rise time for the proposed structure is about 1 ps.


Author(s):  
Zhuoran Wang ◽  
Guy Verschaffelt ◽  
Gabor Mezosi ◽  
Marc Sorel ◽  
Jan Danckaert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document