scholarly journals The Role of 18F-Fluorodeoxyglucose Positron Emission Tomography in the Prognostication, Diagnosis, and Management of Thyroid Carcinoma

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Brian Hung-Hin Lang

18F-fluorodeoxyglucose positron emission tomography (FDG-PET) plays an increasingly important role in the prognostication, diagnosis, and management of thyroid carcinoma. For patients diagnosed with primary or persistent/recurrent thyroid carcinoma, a finding of FDG-PET positivity implies a more aggressive tumor biology and a distinct mutational profile, both of which carry prognostic significance. Therefore, FDG-PET positivity may be a useful potential risk factor for preoperative risk stratification in primary thyroid carcinoma. This information may help in the planning of subsequent treatment strategy such as the extent of thyroidectomy, prophylactic central neck dissection, and radioiodine ablation. FDG-PET scan has also been found to be a useful adjunct in characterizing indeterminate thyroid nodules on fine needle aspiration cytology. However, larger-sized prospective studies are required to validate this finding. FDG-PET or FDG-PET/CT scan has become the imaging of choice in patients with a negative whole-body radioiodine scan, but with an abnormally raised thyroglobulin level after total thyroidectomy and radioiodine ablation.

Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 497
Author(s):  
Seon-Kyu Kim ◽  
Sung Gwe Ahn ◽  
Jeong-Yeon Mun ◽  
Mi-So Jeong ◽  
Soong June Bae ◽  
...  

The standardized uptake value (SUV), an indicator of the degree of glucose uptake in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), has been used for predicting the clinical behavior of malignant tumors. However, its characteristics have been insufficiently explored at the genomics level. Here, we aim to identify genomic signatures reflecting prognostic SUV characteristics in breast cancer (BRC). Through integrative genomic profiling of 3710 BRC patients, including 254 patients who underwent preoperative FDG-PET, we identified an SUV signature, which showed independent clinical utility for predicting BRC prognosis (hazard ratio [HR] 1.27, 95% confidence interval [CI] = 1.12 to 1.45, p = 2.23 × 10−4). The risk subgroups classified by the signature exhibited mutually exclusive mutation patterns of TP53 and PIK3CA and showed significantly different responsiveness to immunotherapy. Experimental assays revealed that a signaling axis defined by TP53–FOXM1 and its downstream effectors in glycolysis–gluconeogenesis, including LDHA, might be important mediators in the FDG-PET process. Our molecular characterizations support an understanding of glucose metabolism and poor prognosis in BRC with a high SUV, utilizable in clinical practice to assist other diagnostic tools.


Sign in / Sign up

Export Citation Format

Share Document