Characterization of Eigenvalues in Spectral Gap for Singular Differential Operators
Keyword(s):
The spectral properties fornorder differential operators are considered. When given a spectral gap(a,b)of the minimal operatorT0with deficiency indexr, arbitrarympointsβi (i=1,2,…,m)in(a,b), and a positive integer functionpsuch that∑i=1mp(βi)≤r,T0has a self-adjoint extensionT̃such that eachβi (i=1,2,…,m)is an eigenvalue ofT̃with multiplicity at leastp(βi).
1992 ◽
Vol 120
(3-4)
◽
pp. 361-365
◽
1987 ◽
Vol 24
(04)
◽
pp. 838-851
◽
1978 ◽
Vol 82
(1-2)
◽
pp. 117-134
◽
1980 ◽
Vol 38
(1)
◽
pp. 118-138
◽
2015 ◽
Vol 68
(3-4)
◽
pp. 501-518
◽