scholarly journals A Generalized Alternative Theorem of Partial and Generalized Cone Subconvexlike Set-Valued Maps and Its Applications in Linear Spaces

2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Zhi-Ang Zhou ◽  
Jian-Wen Peng

We first introduce a new notion of the partial and generalized cone subconvexlike set-valued map and give an equivalent characterization of the partial and generalized cone subconvexlike set-valued map in linear spaces. Secondly, a generalized alternative theorem of the partial and generalized cone subconvexlike set-valued map was presented. Finally, Kuhn-Tucker conditions of set-valued optimization problems were established in the sense of globally proper efficiency.

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhi-Ang Zhou

We studyϵ-Henig saddle points and duality of set-valued optimization problems in the setting of real linear spaces. Firstly, an equivalent characterization ofϵ-Henig saddle point of the Lagrangian set-valued map is obtained. Secondly, under the assumption of the generalized cone subconvexlikeness of set-valued maps, the relationship between theϵ-Henig saddle point of the Lagrangian set-valued map and theϵ-Henig properly efficient element of the set-valued optimization problem is presented. Finally, some duality theorems are given.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Ke Quan Zhao ◽  
Yuan Mei Xia ◽  
Hui Guo

A class of vector optimization problems is considered and a characterization ofE-Benson proper efficiency is obtained by using a nonlinear scalarization function proposed by Göpfert et al. Some examples are given to illustrate the main results.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Qi Liu ◽  
Yongjin Li

In this paper, we will introduce a new geometric constant LYJ(λ,μ,X) based on an equivalent characterization of inner product space, which was proposed by Moslehian and Rassias. We first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly non-square is given. Moreover, some sufficient conditions which imply weak normal structure are presented. Finally, we obtain some relationship between the other well-known geometric constants and LYJ(λ,μ,X). Also, this new coefficient is computed for X being concrete space.


2021 ◽  
Vol 40 (1) ◽  
pp. 1277-1285
Author(s):  
Zhen-yu Jin ◽  
Cong-hua Yan

Motivated by the concept of lattice-bornological vector spaces of J. Paseka, S. Solovyov and M. Stehlík, which extends bornological vector spaces to the fuzzy setting over a complete lattice, this paper continues to study the theory of L-bornological vector spaces. The specific description of L-bornological vector spaces is presented, some properties of Lowen functors between the category of bornological vector spaces and the category of L-bornological vector spaces are discussed. In addition, the notions and some properties of L-Mackey convergence and separation in L-bornological vector spaces are showed. The equivalent characterization of separation in L-bornological vector spaces in terms of L-Mackey convergence is obtained in particular.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1231
Author(s):  
Carmen Escribano ◽  
Raquel Gonzalo ◽  
Emilio Torrano

In this work, our aim is to obtain conditions to assure polynomial approximation in Hilbert spaces L 2 ( μ ) , with μ a compactly supported measure in the complex plane, in terms of properties of the associated moment matrix with the measure μ . To do it, in the more general context of Hermitian positive semidefinite matrices, we introduce two indexes, γ ( M ) and λ ( M ) , associated with different optimization problems concerning theses matrices. Our main result is a characterization of density of polynomials in the case of measures supported on Jordan curves with non-empty interior using the index γ and other specific index related to it. Moreover, we provide a new point of view of bounded point evaluations associated with a measure in terms of the index γ that will allow us to give an alternative proof of Thomson’s theorem, by using these matrix indexes. We point out that our techniques are based in matrix algebra tools in the framework of Hermitian positive definite matrices and in the computation of certain indexes related to some optimization problems for infinite matrices.


Sign in / Sign up

Export Citation Format

Share Document