scholarly journals Finite-Horizon Optimal Control of Discrete-Time Switched Linear Systems

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Qixin Zhu ◽  
Guangming Xie

Finite-horizon optimal control problems for discrete-time switched linear control systems are investigated in this paper. Two kinds of quadratic cost functions are considered. The weight matrices are different. One is subsystem dependent; the other is time dependent. For a switched linear control system, not only the control input but also the switching signals are control factors and are needed to be designed in order to minimize cost function. As a result, optimal design for switched linear control systems is more complicated than that of non-switched ones. By using the principle of dynamic programming, the optimal control laws including both the optimal switching signal and the optimal control inputs are obtained for the two problems. Two examples are given to verify the theory results in this paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Sendren Sheng-Dong Xu ◽  
Chih-Chiang Chen

The equivalence of two conditions, condition (3) and condition (4) stated in Problem Statement section, regarding the existence of stabilizing switching laws between two unstable linear systems first appeared in (Feron 1996). Although Feron never published this result, it has been referenced in almost every survey on switched systems; see, for example, (Liberzon and Morse 1999). This paper proposes another way to prove the equivalence of two conditions regarding the existence of stabilizing switching laws between two unstable linear systems. One is effective for theoretical derivation, while the other is implementable, and a class of stabilizing switching laws have been explicitly constructed by Wicks et al. (1994). With the help of the equivalent relation, a condition for the existence of controllers and stabilizing switching laws between two unstabilizable linear control systems is then proposed. Then, the study is further extended to the issue concerning the construction of quadratically stabilizing switching laws among unstable linear systems and unstabilizable linear control systems. The obtained results are employed to study the existence of control laws and quadratically stabilizing switching laws within a class of unstabilizable linear control systems. The numerical examples are illustrated and simulated to show the feasibility and effectiveness of the proposed methods.



2000 ◽  
Vol 310 (1-3) ◽  
pp. 49-71 ◽  
Author(s):  
Rafael Bru ◽  
Sergio Romero ◽  
Elena Sánchez


2010 ◽  
Vol 16 (3) ◽  
pp. 258-271 ◽  
Author(s):  
Carlos E. de Souza ◽  
Daniel F. Coutinho ◽  
Minyue Fu




Author(s):  
Fritz Colonius ◽  
João A. N. Cossich ◽  
Alexandre J. Santana

AbstractFor linear control systems in discrete time controllability properties are characterized. In particular, a unique control set with nonvoid interior exists and it is bounded in the hyperbolic case. Then a formula for the invariance pressure of this control set is proved.



Sign in / Sign up

Export Citation Format

Share Document