scholarly journals Fabrication and Characterization of Magnetoresponsive Electrospun Nanocomposite Membranes Based on Methacrylic Random Copolymers and Magnetite Nanoparticles

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Ioanna Savva ◽  
George Krekos ◽  
Alina Taculescu ◽  
Oana Marinica ◽  
Ladislau Vekas ◽  
...  

Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA) and 2-(acetoacetoxy)ethyl methacrylate (AEMA) (MMA-co-AEMA) and oleic acid-coated magnetite (OA·Fe3O4) nanoparticles. The AEMA moieties containingβ-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4) content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.

2010 ◽  
Vol 2 (1) ◽  
Author(s):  
Jinxian Wang ◽  
Xiangting Dong ◽  
Zhen Qu ◽  
Guixia Liu ◽  
Wensheng Yu

2020 ◽  
Vol 20 (12) ◽  
pp. 7659-7664
Author(s):  
Senthilkumar Jayanthi ◽  
Thirugnanam Lavanya ◽  
Mrinal Dutta ◽  
Nagarajan Anbil Saradha ◽  
Kaveri Satheesh

Graphene has proved to be superior material for its exceptional physicochemical properties. However engineering graphene macroscopic structures by manipulating microscopic structures has faced a great challenge. Towards this here we report a fabrication method of graphene nanofiber by using simple electrospinning method. Fourier transform infrared and Raman spectroscopic characterizations confirmed the transformation from GO to reduced graphene for the nanofiber material. Estimated surface area of this material is as high as 526 m2g−1 with pores having size around 20 nm. Specific-capacitance of these nanofibers for current-density of 1 Ag−1 is 144.2 Fg−1, which will be useful for the advancement of devices for storing energy.


Sign in / Sign up

Export Citation Format

Share Document