scholarly journals Fabrication by Electrospinning Technique and Characterization of Curcuma Mangga Val Reinforced PVA Fibrous Membranes

Author(s):  
Harini Sosiati ◽  
Muhammad Dirga Rianto ◽  
Aris Widyo Nugroho ◽  
Sudarisman
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Ioanna Savva ◽  
George Krekos ◽  
Alina Taculescu ◽  
Oana Marinica ◽  
Ladislau Vekas ◽  
...  

Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA) and 2-(acetoacetoxy)ethyl methacrylate (AEMA) (MMA-co-AEMA) and oleic acid-coated magnetite (OA·Fe3O4) nanoparticles. The AEMA moieties containingβ-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4) content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.


2013 ◽  
Vol 750-752 ◽  
pp. 1914-1918 ◽  
Author(s):  
Yin Zheng Liang ◽  
Si Chen Cheng ◽  
Jian Meng Zhao ◽  
Chang Huan Zhang ◽  
Yi Ping Qiu

The poly (vinylidene fluoride)/poly (methyl methacrylate)(PVDF/PMMA) composite fibrous membranes with different blend ratio for use as separator of lithium-ion batteries have been developed by electrospinning technique. The surface morphology and crystal structure of electrospun PVDF/PMMA composite fibrous membranes are characterized using scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and differential scanning calorimetry (DSC).The results indicated that the addition of PMMA into PVDF increased the fiber diameter, decreased the crystalline of electrospun composite fibrous membranes and the good molecular level interaction between these two polymers were obtained. Meanwhile,electrospun PVDF/PMMA (90/10) composite fibrous membranes exhibited the highest ionic conductivity of 2.54×10-3S/cm at room temperature with electrochemical stability of up to 5.0V.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1869
Author(s):  
A K M Mashud Alam ◽  
Donovan Jenks ◽  
George A. Kraus ◽  
Chunhui Xiang

Organophosphate (OP) compounds, a family of highly hazardous chemical compounds included in nerve agents and pesticides, have been linked to more than 250,000 annual deaths connected to various chronic diseases. However, a solid-state sensing system that is able to be integrated into a clothing system is rare in the literature. This study aims to develop a nanofiber-based solid-state polymeric material as a soft sensor to detect OP compounds present in the environment. Esters of polydiacetylene were synthesized and incorporated into a cellulose acetate nanocomposite fibrous assembly developed with an electrospinning technique, which was then hydrolyzed to generate more hydroxyl groups for OP binding. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Instron® tensile tester, contact angle analyzer, and UV–Vis spectroscopy were employed for characterizations. Upon hydrolysis, polydiacetylene esters in the cellulosic fiber matrix were found unaffected by hydrolysis treatment, which made the composites suitable for OP sensing. Furthermore, the nanofibrous (NF) composites exhibited tensile properties suitable to be used as a textile material. Finally, the NF composites exhibited colorimetric sensing of OP, which is visible to the naked eye. This research is a landmark study toward the development of OP sensing in a protective clothing system.


2020 ◽  
pp. 004051752092551
Author(s):  
Javeed A Awan ◽  
Saif Ur Rehman ◽  
Muhammad Kashif Bangash ◽  
Fiaz Hussain ◽  
Jean-Noël Jaubert

Curcumin is a naturally occurring hydrophobic polyphenol compound. It exhibits a wide range of biological activities such as antibacterial, anti-inflammatory, anti-carcinogenic, antifungal, anti-HIV, and antimicrobial activity. In this research work, antimicrobial curcumin nanofibrous membranes are produce by an electrospinning technique using the Eudragit RS 100 (C19H34ClNO6) polymer solution enriched with curcumin. The morphology and chemistry of the membrane are analyzed using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Kirby Bauer disk diffusion tests are carried out to examine the antibacterial effectiveness of the membrane. Experimental results show that the nanofibers produced are of uniform thickness morphology and curcumin is successfully incorporated into the nanofibrous mat, while no chemical bonding was observed between curcumin and the polymer. The antimicrobial curcumin nanofibrous membranes can be effectively applied as antimicrobial barrier in a wide variety of medical applications such as wound healing, scaffolds, and tissue engineering.


2010 ◽  
Vol 2 (1) ◽  
Author(s):  
Jinxian Wang ◽  
Xiangting Dong ◽  
Zhen Qu ◽  
Guixia Liu ◽  
Wensheng Yu

2017 ◽  
Vol 5 (36) ◽  
pp. 19151-19158 ◽  
Author(s):  
Yan Wang ◽  
Jiang Li ◽  
Jianyang Sun ◽  
Yanbin Wang ◽  
Xu Zhao

Flexible Cu–Al2O3 membranes with high Fenton catalytic performance have been fabricated via electrospinning technique.


2020 ◽  
Vol 20 (12) ◽  
pp. 7659-7664
Author(s):  
Senthilkumar Jayanthi ◽  
Thirugnanam Lavanya ◽  
Mrinal Dutta ◽  
Nagarajan Anbil Saradha ◽  
Kaveri Satheesh

Graphene has proved to be superior material for its exceptional physicochemical properties. However engineering graphene macroscopic structures by manipulating microscopic structures has faced a great challenge. Towards this here we report a fabrication method of graphene nanofiber by using simple electrospinning method. Fourier transform infrared and Raman spectroscopic characterizations confirmed the transformation from GO to reduced graphene for the nanofiber material. Estimated surface area of this material is as high as 526 m2g−1 with pores having size around 20 nm. Specific-capacitance of these nanofibers for current-density of 1 Ag−1 is 144.2 Fg−1, which will be useful for the advancement of devices for storing energy.


2013 ◽  
Vol 1 (9) ◽  
pp. 1207-1213 ◽  
Author(s):  
Sawanta S. Mali ◽  
Hyungjin Kim ◽  
Woon Yeong Jang ◽  
Hye Seon Park ◽  
Pramod S. Patil ◽  
...  

2005 ◽  
Vol 13 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Hyoung-Joon Jin ◽  
Mi-Ok Hwang ◽  
Jin San Yoon ◽  
Kwang Hee Lee ◽  
In-Joo Chin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document