scholarly journals Pattern Formation in a Cross-Diffusive Ratio-Dependent Predator-Prey Model

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Xinze Lian ◽  
Yanhong Yue ◽  
Hailing Wang

This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatial distribution of the species with self- and cross-diffusion in a Holling-III ratio-dependent predator-prey model. The diffusion instability of the positive equilibrium of the model with Neumann boundary conditions is discussed. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by self- and cross-diffusion in the model and find that the model dynamics exhibits a cross-diffusion controlled formation growth to spots, stripes, and spiral wave pattern replication, which show that reaction-diffusion model is useful to reveal the spatial predation dynamics in the real world.

2019 ◽  
Vol 29 (03) ◽  
pp. 1950036 ◽  
Author(s):  
R. Sivasamy ◽  
M. Sivakumar ◽  
K. Balachandran ◽  
K. Sathiyanathan

This study focuses on the spatial-temporal dynamics of predator–prey model with cross-diffusion where the intake rate of prey is per capita predator according to ratio-dependent functional response and the prey is harvested through nonlinear harvesting strategy. The permanence analysis and local stability analysis of the proposed model without cross-diffusion are analyzed. We derive the conditions for the appearance of diffusion-driven instability and global stability of the considered model. Also the parameter space for Turing region is specified by keeping the cross-diffusion coefficient as one of the crucial parameters. Numerical simulations are given to justify the proposed theoretical results and to show that the cross-diffusion term plays a significant role in the pattern formation.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Shengmao Fu ◽  
Lina Zhang

In this paper, we consider a cross-diffusion predator-prey model with sex structure. We prove that cross-diffusion can destabilize a uniform positive equilibrium which is stable for the ODE system and for the weakly coupled reaction-diffusion system. As a result, we find that stationary patterns arise solely from the effect of cross-diffusion.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250014 ◽  
Author(s):  
LIJUAN ZHA ◽  
JING-AN CUI ◽  
XUEYONG ZHOU

Ratio-dependent predator–prey models are favored by many animal ecologists recently as more suitable ones for predator–prey interactions where predation involves searching process. In this paper, a ratio-dependent predator–prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Yang

The spatiotemporal dynamics of a diffusive ratio-dependent Holling-Tanner predator-prey model with Smith growth subject to zero-flux boundary condition are investigated analytically and numerically. The asymptotic stability of the positive equilibrium and the existence of Hopf bifurcation around the positive equilibrium are shown; the conditions of Turing instability are obtained. And with the help of numerical simulations, it is found that the model exhibits complex pattern replication: stripes, spots-stripes mixtures, and spots Turing patterns.


2017 ◽  
Vol 10 (06) ◽  
pp. 1750079 ◽  
Author(s):  
M. Sivakumar ◽  
K. Balachandran ◽  
K. Karuppiah

In this paper, we consider a diffusive density-dependent predator–prey model with Crowley–Martin functional responses subject to Neumann boundary condition. We analyze the stability of the positive equilibrium and the existence of spatially homogeneous and inhomogeneous periodic solutions through the distribution of the eigenvalues. The direction and stability of Hopf bifurcation are determined by the normal form theory and the center manifold theory. Finally, numerical simulations are given to verify our theoretical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-15
Author(s):  
Huitao Zhao ◽  
Yiping Lin ◽  
Yunxian Dai

A ratio-dependent predator-prey model with two time delays is studied. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semitrivial equilibrium is addressed. By using the theory of functional equation and Hopf bifurcation, the conditions on which positive equilibrium exists and the quality of Hopf bifurcation are given. Using a global Hopf bifurcation result of Wu (1998) for functional differential equations, the global existence of the periodic solutions is obtained. Finally, an example for numerical simulations is also included.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Meijun Chen ◽  
Shengmao Fu ◽  
Xiaoli Yang

The global asymptotic behavior of solutions in a cross-diffusive predator-prey model with cannibalism is studied in this paper. Firstly, the local stability of nonnegative equilibria for the weakly coupled reaction-diffusion model and strongly coupled cross-diffusion model is discussed. It is shown that the equilibria have the same stability properties for the corresponding ODE model and semilinear reaction-diffusion model, but under suitable conditions on reaction coefficients, cross-diffusion-driven Turing instability occurs. Secondly, the uniform boundedness and the global existence of solutions for the model with SKT-type cross-diffusion are investigated when the space dimension is one. Finally, the global stability of the positive equilibrium is established by constructing a Lyapunov function. The result indicates that, under certain conditions on reaction coefficients, the model has no nonconstant positive steady state if the diffusion matrix is positive definite and the self-diffusion coefficients are large enough.


Sign in / Sign up

Export Citation Format

Share Document