scholarly journals A Note on the Second Order of Accuracy Stable Difference Schemes for the Nonlocal Boundary Value Hyperbolic Problem

2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Ozgur Yildirim

The second order of accuracy absolutely stable difference schemes are presented for the nonlocal boundary value hyperbolic problem for the differential equations in a Hilbert spaceHwith the self-adjoint positive definite operatorA. The stability estimates for the solutions of these difference schemes are established. In practice, one-dimensional hyperbolic equation with nonlocal boundary conditions and multidimensional hyperbolic equation with Dirichlet conditions are considered. The stability estimates for the solutions of these difference schemes for the nonlocal boundary value hyperbolic problem are established. Finally, a numerical method proposed and numerical experiments, analysis of the errors, and related execution times are presented in order to verify theoretical statements.

2006 ◽  
Vol 2006 ◽  
pp. 1-13 ◽  
Author(s):  
A. Ashyralyev ◽  
G. Judakova ◽  
P. E. Sobolevskii

The nonlocal boundary value problem for hyperbolic-elliptic equationd2u(t)/dt2+Au(t)=f(t),(0≤t≤1),−d2u(t)/dt2+Au(t)=g(t),(−1≤t≤0),u(0)=ϕ,u(1)=u(−1)in a Hilbert spaceHis considered. The second order of accuracy difference schemes for approximate solutions of this boundary value problem are presented. The stability estimates for the solution of these difference schemes are established.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Ozgur Yildirim ◽  
Meltem Uzun

This paper presents a third order of accuracy stable difference scheme for the approximate solution of multipoint nonlocal boundary value problem of the hyperbolic type in a Hilbert space with self-adjoint positive definite operator. Stability estimates for solution of the difference scheme are obtained. Some results of numerical experiments that support theoretical statements are presented.


Filomat ◽  
2014 ◽  
Vol 28 (5) ◽  
pp. 981-993 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Mesut Urun

In the present study, the second order of accuracy difference scheme for numerical solution of the boundary value problem for the differential equation with an unknown parameter p {idu(t)/dt + Au(t) + iu(t) = f (t) + p, 0 < t < T, u(0) = ? u(T) = ? in a Hilbert space H with self-adjoint positive definite operator A is presented. Theorem on the stability of this difference scheme is established. The stability estimates for the solution of difference schemes for two determination of an unknown parameter problem for Schr?dinger equations are given.


2005 ◽  
Vol 2005 (2) ◽  
pp. 183-213 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Pavel E. Sobolevskii

We consider the abstract Cauchy problem for differential equation of the hyperbolic typev″(t)+Av(t)=f(t)(0≤t≤T),v(0)=v0,v′(0)=v′0in an arbitrary Hilbert spaceHwith the selfadjoint positive definite operatorA. The high order of accuracy two-step difference schemes generated by an exact difference scheme or by the Taylor decomposition on the three points for the numerical solutions of this problem are presented. The stability estimates for the solutions of these difference schemes are established. In applications, the stability estimates for the solutions of the high order of accuracy difference schemes of the mixed-type boundary value problems for hyperbolic equations are obtained.


2019 ◽  
Vol 27 (4) ◽  
pp. 457-468 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Abdullah Said Erdogan ◽  
Ali Ugur Sazaklioglu

Abstract The present paper is devoted to the investigation of a source identification problem that describes the flow in capillaries in the case when an unknown pressure acts on the system. First and second order of accuracy difference schemes are presented for the numerical solution of this problem. Almost coercive stability estimates for these difference schemes are established. Additionally, some numerical results are provided by testing the proposed methods on an example.


Author(s):  
Ozgur Yildirim

In this paper, third and fourth order of accuracy stable difference schemes for approximately solving multipoint nonlocal boundary value problems for hyperbolic equations with the Neumann boundary conditions are considered. Stability estimates for the solutions of these difference schemes are presented. Finite difference method is used to obtain numerical solutions. Numerical results of errors and CPU times are presented and are analyzed.


2007 ◽  
Vol 2007 ◽  
pp. 1-16 ◽  
Author(s):  
A. Ashyralyev

The first and second orders of accuracy difference schemes for the approximate solutions of the nonlocal boundary value problemv′(t)+Av(t)=f(t)(0≤t≤1),v(0)=v(λ)+μ,0<λ≤1, for differential equation in an arbitrary Banach spaceEwith the strongly positive operatorAare considered. The well-posedness of these difference schemes in difference analogues of spaces of smooth functions is established. In applications, the coercive stability estimates for the solutions of difference schemes for the approximate solutions of the nonlocal boundary value problem for parabolic equation are obtained.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Ali Sirma

The nonlocal boundary value problem for Schrödinger equation in a Hilbert space is considered. The second-order of accuracy -modified Crank-Nicolson difference schemes for the approximate solutions of this nonlocal boundary value problem are presented. The stability of these difference schemes is established. A numerical method is proposed for solving a one-dimensional nonlocal boundary value problem for the Schrödinger equation with Dirichlet boundary condition. A procedure of modified Gauss elimination method is used for solving these difference schemes. The method is illustrated by numerical examples.


Sign in / Sign up

Export Citation Format

Share Document