scholarly journals Solving Scattering from Conducting Body Coated by Thin-Layer Material by Hybrid Shell Vector Element with Boundary Integral Method

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Lin Lei ◽  
Jun Hu ◽  
Hao-Quan Hu

The finite element boundary integral (FEM-BI) method is widely used in the scattering and radiating problems. But for the conducting body coated by thin-layer material, plenty of fine meshes are required to discretize the geometry in the traditional FEM. It requires very expensive storage and CPU time. In this paper, the hybrid shell vector element with the boundary integral method is used to expedite the solution of thin coating problems. The shell vector elements are used to discretize thin-layer material instead of traditional tetrahedral elements. Consequently, the volume integral can be simplified into surface integral. This method reduces the number of unknowns greatly and is also extended into the complicated case of multi-thin-layer coating materials. Several numerical results are presented to prove the accuracy and efficiency of this present method.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Lin Lei ◽  
Jun Hu ◽  
Hao-Quan Hu

For the conducting body coated with thin-layer material, plenty of fine meshes are required in general. In this paper, shell vector element (SVE) is used for modeling of thin coating dielectric. Further, a domain decomposition (DD) method for hybrid shell vector element method boundary integral (SVE-BI) is proposed for analysis of electromagnetic problem of multiple three-dimensional thin-coating objects. By this method, the whole computational domains are divided into sub-SVE domains and boundary element domains. With shell element, not only the unknowns are far less than the one by traditional vector element method, but only surface integral is required. The DDM framework used for hybrid SVE-BI also enhances the computational efficiency of solving scattering from multiple coating objects greatly. Finally, several numerical examples are presented to prove the accuracy and efficiency of this DDM-SVE-BI method.


SoftwareX ◽  
2021 ◽  
Vol 15 ◽  
pp. 100785 ◽  
Author(s):  
David S. Kammer ◽  
Gabriele Albertini ◽  
Chun-Yu Ke

Sign in / Sign up

Export Citation Format

Share Document