layer potential
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 52)

H-INDEX

27
(FIVE YEARS 3)

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 411
Author(s):  
David J. Smith ◽  
Meurig T. Gallagher ◽  
Rudi Schuech ◽  
Thomas D. Montenegro-Johnson

The method of regularised stokeslets is widely used to model microscale biological propulsion. The method is usually implemented with only the single-layer potential, the double-layer potential being neglected, despite this formulation often not being justified a priori due to nonrigid surface deformation. We describe a meshless approach enabling the inclusion of the double layer which is applied to several Stokes flow problems in which neglect of the double layer is not strictly valid: the drag on a spherical droplet with partial-slip boundary condition, swimming velocity and rate of working of a force-free spherical squirmer, and trajectory, swimmer-generated flow and rate of working of undulatory swimmers of varying slenderness. The resistance problem is solved accurately with modest discretisation on a notebook computer with the inclusion of the double layer ranging from no-slip to free-slip limits; the neglect of the double-layer potential results in up to 24% error, confirming the importance of the double layer in applications such as nanofluidics, in which partial slip may occur. The squirming swimmer problem is also solved for both velocity and rate of working to within a small percent error when the double-layer potential is included, but the error in the rate of working is above 250% when the double layer is neglected. The undulating swimmer problem by contrast produces a very similar value of the velocity and rate of working for both slender and nonslender swimmers, whether or not the double layer is included, which may be due to the deformation’s ‘locally rigid body’ nature, providing empirical evidence that its neglect may be reasonable in many problems of interest. The inclusion of the double layer enables us to confirm robustly that slenderness provides major advantages in efficient motility despite minimal qualitative changes to the flow field and force distribution.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012146
Author(s):  
M Nemaire ◽  
P Asensio ◽  
J-M Badier ◽  
J Leblond ◽  
J-P Marmorat

Abstract In this work, we consider the inverse source recovery problem from sEEG, EEG and MEG point-wise data. We regard this as an inverse source recovery problem for L2 vector-fields normally oriented and supported on the grey/white matter interface, which together with the brain, skull and scalp form a non-homogeneous layered conductor. We assume that the quasistatic approximation of Maxwell’s equation holds for the electro-magnetic fields considered. The electric data is measured point-wise inside and outside the conductor while the magnetic data is measured only point-wise outside the conductor. These ill-posed problems are solved via Tikhonov regularization on triangulations of the interfaces and a piecewise linear model for the current on the triangles. Both in the continuous and discrete formulation the electric potential is expressed as a linear combination of double layer potentials while the magnetic flux density in the continuous case is a vector-surface integral whose discrete formulation features single layer potentials. A main feature of our approach is that these contributions can be computed exactly. Due to the consideration of the regularity conditions of the electric potential in the inverse source recovery problem, the Cauchy transmission problem for the electric potential is inadvertently solved as well. In the problem, we propagate only the electric potential while the normal derivatives at the interfaces of discontinuity of the electric conductivities are computed directly from the resulting solution. This reduces the computational complexity of the problem. There is a direct connection between the magnetic flux density and the electrical potential in conductors such as the one we explore, hence a coupling of the sEEG, EEG and MEG data for solving the respective inverse source recovery problems simultaneously is direct. We treat these problems in a unified approach that uses only single and/or double layer potentials. We provide numerical examples using realistic meshes of the head with synthetic data.


2021 ◽  
Vol 5 (4) ◽  
pp. 47
Author(s):  
Karolina Kędra ◽  
Marzena Łazarczyk ◽  
Tajana Begović ◽  
Danijel Namjesnik ◽  
Karolina Lament ◽  
...  

Organic matter (OM) interactions with minerals are essential in OM preservation against decomposition in the environment. Here, by combining potentiometric and electrophoretic measurements, we probed the mode of coordination and the role of pH-dependent electrostatic interactions between organic acids and an iron oxide surface. Specifically, we show that malonate ions adsorbed to a hematite surface in a wide pH window between 3 and 8.7 (point of zero charge). The mode of interactions varied with this pH range and depended on the acid and surface acidity constants. In the acidic environment, hematite surface potential was highly positive (+47 mV, pH 3). At pH < 4 malonate adsorption reduced the surface potential (+30 mV at pH 3) but had a negligible effect on the diffuse layer potential, consistent with the inner-sphere malonate complexation. Here, the specific and electrostatic interactions were responsible for the malonate partial dehydration and surface accumulation. These interactions weakened with an increasing pH and near PZC, the hematite surface charge was neutral on average. Adsorbed malonates started to desorb from the surface with less pronounced accumulation in the diffuse layer, which was reflected in zeta potential values. The transition between specific and non-specific sorption regimes was smooth, suggesting the coexistence of the inner- and outer-sphere complexes with a relative ratio that varied with pH.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 380
Author(s):  
Noé Lahaye ◽  
Alexandre Paci ◽  
Stefan G. Llewellyn Smith

The instability of surface lenticular vortices is investigated using a comprehensive suite of laboratory experiments combined with numerical linear stability analysis as well as nonlinear numerical simulations in a two-layer Rotating Shallow Water model. The development of instabilities is discussed and compared between the different methods. The linear stability analysis allows for a clear description of the origin of the instability observed in both the laboratory experiments and numerical simulations. While global qualitative agreement is found, some discrepancies are observed and discussed. Our study highlights that the sensitivity of the instability outcome is related to the initial condition and the lower-layer flow. The inhibition or even suppression of some unstable modes may be explained in terms of the lower-layer potential vorticity profile.


Author(s):  
Alexey A. Bondarchuk ◽  
Mezhlum A. Sumbatyan

In the present work we propose a method to study a two-dimensional flow of non-viscous fluid around an airfoil with a sharp trailing edge, by the double-layer potential theory. The circulation of velocity vector is modeled by the potential of a point vortex whose center is located inside the boundary contour. The magnitude of the circulation is defined on the basis of the Joukowski-Chaplygin postulate. There are presented some results for a Joukowski rudde, as well as for the airfoil in the form of a pair of interacting circles. It is performed a comparison of the circulation with its theoretical value.


2021 ◽  
Vol 26 (4) ◽  
pp. 69
Author(s):  
Camille Carvalho

When using boundary integral equation methods, we represent solutions of a linear partial differential equation as layer potentials. It is well-known that the approximation of layer potentials using quadrature rules suffer from poor resolution when evaluated closed to (but not on) the boundary. To address this challenge, we provide modified representations of the problem’s solution. Similar to Gauss’s law used to modify Laplace’s double-layer potential, we use modified representations of Laplace’s single-layer potential and Helmholtz layer potentials that avoid the close evaluation problem. Some techniques have been developed in the context of the representation formula or using interpolation techniques. We provide alternative modified representations of the layer potentials directly (or when only one density is at stake). Several numerical examples illustrate the efficiency of the technique in two and three dimensions.


Author(s):  
David John Smith ◽  
Meurig Thomas Gallagher ◽  
Rudi Schuech ◽  
Thomas Douglas Montenegro-Johnson

The method of regularized stokeslets is widely-used to model microscale biological propulsion. The method is usually implemented with only the single layer potential, with the double layer potential being neglected, despite this formulation often not being justified a priori due to non-rigid surface deformation. We describe a meshless approach enabling inclusion of the double layer which is applied to several Stokes flow problems in which neglect of the double layer is not strictly valid: the drag on a spherical droplet with partial slip boundary condition, swimming velocity and rate of working of a force-free spherical squirmer, and trajectory, swimmer-generated flow and rate of working of undulatory swimmers of varying slenderness. The resistance problem is solved accurately with modest discretization on a notebook computer with the inclusion of the double layer ranging from no-slip to free slip limits; neglect of the double layer potential results in up to 24% error, confirming the importance of the double layer in applications such as nanofluidics, in which partial slip may occur. The squirming swimmer problem is also solved for both velocity and rate of working to within a few percent error when the double layer potential is included, but the error in the rate of working is above 250% when the double layer is neglected. The undulating swimmer problem by contrast produces a very similar value of the velocity and rate of working for both slender and non-slender swimmers, whether or not the double layer is included, which may be due to the deformation&rsquo;s `locally rigid body&rsquo; nature, providing empirical evidence that its neglect may be reasonable in many problems of interest. Inclusion of the double layer enables us to confirm robustly that slenderness provides major advantages in efficient motility despite minimal qualitative changes to the flow field and force distribution.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1953
Author(s):  
Yao Sun ◽  
Shijie Hao

In this paper, an effective numerical method for the Dirichlet problem connected with the Helmholtz equation is proposed. We choose a single-layer potential approach to obtain the boundary integral equation with the density function, and then we deal with the weakly singular kernel of the integral equation via singular value decomposition and the Nystrom method. The direct problem with noisy data is solved using the Tikhonov regularization method, which is used to filter out the errors in the boundary condition data, although the problems under investigation are well-posed. Finally, a few examples are provided to demonstrate the effectiveness of the proposed method, including piecewise boundary curves with corners.


Sign in / Sign up

Export Citation Format

Share Document